11 |
Comparative Analysis of Electrodynamic Toroidal Radiation Shielding ConfigurationsRosenberg, Max 01 December 2018 (has links)
Beyond the protective confines of Earth's atmosphere and magnetosphere, spacecraft are subject to constant bombardment by high-energy charged particles originating from our Sun in the form of Solar Particle Events (SPEs), and from outside the solar system in the form of Galactic Cosmic Rays (GCRs). The harm these particles do can be reduced or mitigated outright through radiation shielding. Because protons and other charged particles comprise most of these radiation particles, strong magnetic fields could be generated around spacecraft to deflect incoming charged radiation particles. This thesis investigates the performance of specific configurations of toroidal superconducting solenoids to generate magnetic fields that deflect incoming energetic protons via the Lorentz force. Bulk material shielding configurations using various thicknesses of liquid water are similarly investigated, as are combination shielding configurations combining the best-performing toroidal shielding configurations with a small bulk material shield surrounding the spacecraft.
The water shielding configurations tested included shields of uniform thicknesses from 1 cm to 10 cm surrounding an Apollo CSM-sized cylindrical candidate spacecraft. Water shielding was found to be very effective at reducing the SPE dose, from a 86\% reduction at 1 cm of water to a 94\% reduction at 10 cm. However water shielding was found to be minimally effective against the much higher energy Galactic Cosmic Ray protons, with no dose reduction at 1 cm and a paltry 1\% reduction at 10 cm.
The toroidal shielding geometric configurations tested consisted of either 5 or 10 primary toroidal shields surrounding the candidate spacecraft, as was the addition of smaller nested toroidal shields inside the primary toroids and of toroids on the spacecraft's endcaps. The magnetic field strengths tested were 1.7 Tesla, 8.5 Tesla, and 17 Tesla. The best geometric configurations of electrodynamic shielding consisted of 5 primary toroidal shields, 5 total nested shields placed inside the primary toroids, and 2 total shields on the spacecraft's endcaps. The second best geometric configuration consisted of 10 primary toroidal shields plus two total endcap shields. These configurations at 1.7 Tesla reduced the SPE dose by 87\% and 87\%, and reduced the GCR dose by 11\% and 10\%. At 17 Tesla, these configurations both reduced the SPE dose by 90\%, and reduced the GCR dose by 76\% and 61\%. Combining these two configurations with a 1 cm-thick shield of water improved performance against SPE protons to 95\% and 93\% at 1.7 Tesla, and a 97\% and 96\% reduction at 17 Tesla. GCR dose reductions decreased slightly.
Passive material shielding was found capable of providing substantial protection against SPE protons, but was minimally effective against GCR protons without very thick shielding. Electrodynamic shielding, at magnetic field strengths of 1.7 Tesla, was found to be similarly effective against SPE protons, and marginally more effective against GCR protons. Combining the best toroidal shielding configurations, at magnetic field strengths of 1.7 Tesla, with water shielding yielded high protection against SPE protons, but still marginal protection against GCR protons. Increasing the magnetic field strength to 17 Tesla was found to provide very high protection against SPE protons, and to significantly reduce the radiation dose from GCR protons. Of all shielding configurations tested, only those electrodynamic configurations with magnetic fields of 17 Tesla were able to reduce the GCR dose by more than half.
|
12 |
Determining the Effect of Shielding for an Eye Exposed to Secondary Particles Produced by Galactic Cosmic Rays using MCNPX ModelingDe Graaf, Brandon Michael January 2010 (has links)
No description available.
|
13 |
Resonance Production and Nuclear Fragmentation for Space RadiationNorman, Ryan Bradley 22 April 2008 (has links)
Space radiation and its effects on human life and sensitive equipment are of concern to a safe exploration of space. Radiation fields are modified in quality and quantity by intervening shielding materials. The modification of space radiation by shielding materials is modeled by deterministic transport codes using the Boltzmann transport equation. Databases of cross sections for particle production are needed as input for transport codes. A simple model of nucleon-nucleon interactions is developed and used to derive differential and total cross sections. The validity of the model is verified for proton-proton elastic scattering and applied to delta-resonance production. Additionally, a comprehensive validation program of the nucleus-nucleus fragmentation cross section models NUCFRG2 and QMSFRG is performed. A database of over 300 experiments was assembled and used to compare to model fragmentation cross sections.
|
14 |
The Effects of Nuclear Radiation on Aging Reinforced Concrete Structures in Nuclear Power PlantsMirhosseini, SomayehSadat January 2010 (has links)
In this thesis we look at one of the aging mechanisms that may have affected current aged Nuclear Power Plants (NPPs). Irradiation as an age-related degradation mechanism is studied for Reinforced Concrete (RC) in NPPs. This problem can be important for aged reactor buildings, radwaste buildings, spent nuclear fuel, research reactors, or accelerators that experience high levels of radiation close to existing thresholds. Mechanical properties of concrete are the most important parameters affected by radiation in NPPs. Compressive strength of concrete is reduced between 80 and 35 \% for radiation fluences between $2\times 10^{19}$ and $2\times 10^{21} n/cm^2$. Tensile strength reduction is more significant than compressive strength. It is reduced between 20 and 80 \% for a radiation fluence equal to $5\times 10^{19}$. We chose three radiation levels $2\times 10^{19}$, $2\times 10^{20}$, $2\times 10^{20}$ based on experimental results as the critical levels of radiation that RC structures in NPPs may be exposed to.
Structures susceptible to the problem are mostly RC walls; so the RC panel is chosen as an appropriate representative scale element for the analysis. The effect of radiation on mechanical properties of concrete is considered to analyze degraded scale elements. Material properties, geometry, and loading scenarios of scale elements are selected to be close to actual quantities in existing nuclear power plant. Elements are analyzed under six types of loading combination of shear and axial loading conditions. A nonlinear finite element program, Membrane-2000, based on the Modified Compression Field Theory (MCFT) is used to solve scale elements numerically. Element behaviors are studied considering the factors influence ultimate strength capacity, failure mode, and structural ductility index of members. The results show that ultimate shear capacity of the elements subjected to combinations of shear and tension loading are reduced significantly for highly reinforced elements ($1.35<\rho<1.88$) in $2\times 10^{21} n/cm^2$ radiation. RC panels under shear-biaxial and uniaxial compression also show significant strength capacity reduction in radiation levels $2\times 10^{20} n/cm^2$ and $2\times 10^{21} n/cm^2$, respectively. Failure modes of the elements change from yielding of steel to shear failure by increasing level of degradation for the elements with reinforcement ratio between 0.9 and 1.88. Ductility of the RC panels is reduced significantly in the critical levels of radiation. Ductility of the elements became less than the allowable ductility value by increasing level of radiation.
|
15 |
The Effects of Nuclear Radiation on Aging Reinforced Concrete Structures in Nuclear Power PlantsMirhosseini, SomayehSadat January 2010 (has links)
In this thesis we look at one of the aging mechanisms that may have affected current aged Nuclear Power Plants (NPPs). Irradiation as an age-related degradation mechanism is studied for Reinforced Concrete (RC) in NPPs. This problem can be important for aged reactor buildings, radwaste buildings, spent nuclear fuel, research reactors, or accelerators that experience high levels of radiation close to existing thresholds. Mechanical properties of concrete are the most important parameters affected by radiation in NPPs. Compressive strength of concrete is reduced between 80 and 35 \% for radiation fluences between $2\times 10^{19}$ and $2\times 10^{21} n/cm^2$. Tensile strength reduction is more significant than compressive strength. It is reduced between 20 and 80 \% for a radiation fluence equal to $5\times 10^{19}$. We chose three radiation levels $2\times 10^{19}$, $2\times 10^{20}$, $2\times 10^{20}$ based on experimental results as the critical levels of radiation that RC structures in NPPs may be exposed to.
Structures susceptible to the problem are mostly RC walls; so the RC panel is chosen as an appropriate representative scale element for the analysis. The effect of radiation on mechanical properties of concrete is considered to analyze degraded scale elements. Material properties, geometry, and loading scenarios of scale elements are selected to be close to actual quantities in existing nuclear power plant. Elements are analyzed under six types of loading combination of shear and axial loading conditions. A nonlinear finite element program, Membrane-2000, based on the Modified Compression Field Theory (MCFT) is used to solve scale elements numerically. Element behaviors are studied considering the factors influence ultimate strength capacity, failure mode, and structural ductility index of members. The results show that ultimate shear capacity of the elements subjected to combinations of shear and tension loading are reduced significantly for highly reinforced elements ($1.35<\rho<1.88$) in $2\times 10^{21} n/cm^2$ radiation. RC panels under shear-biaxial and uniaxial compression also show significant strength capacity reduction in radiation levels $2\times 10^{20} n/cm^2$ and $2\times 10^{21} n/cm^2$, respectively. Failure modes of the elements change from yielding of steel to shear failure by increasing level of degradation for the elements with reinforcement ratio between 0.9 and 1.88. Ductility of the RC panels is reduced significantly in the critical levels of radiation. Ductility of the elements became less than the allowable ductility value by increasing level of radiation.
|
16 |
Simulace tepelných ztrát a tepelné zátěže u budovy A1 a analýza opatření na jejich snížení / Simulation of heating and cooling loads of the A1 building and the analysis of energy saving measuresBartoník, Adam January 2010 (has links)
This thesis deals with the heat loss and the heat loads simulation of A1 building in the area of The Faculty of Mechanical Engineering, Brno University of Technology and with the measures of the energy saving. The measures of the thermo-technical charakteristics for the winter and summer operations are provided on the base of the current state simulation. These measures include increasing of thermal resistence (of the building case), the radiation shielding, the sun blinds and the passive cooling by the night ventilation. All the simulation are performed in TRNSYS 16.1 software.
|
17 |
Radiation Shielding Simulations for Small Satellites on Geostationary Transfer Orbit / Säteilysuojaussimulaatioita pienille satelliiteille geostationaarisilläsiirtoradoillaFetzer, Anton January 2022 (has links)
The emergence of small and affordable satellites has led to rapid growth in the number of launched satellites over the past two decades. To save costs, small satellites often use mass-produced electronic components not explicitly designed for the radiation environment of space, which reduces reliability and makes them unsuitable for higher orbits. Improved radiation protection would enable small satellites to operate in high radiation environments and increase their reliability. This work investigates how small satellite electronics can be protected against the high radiation environment of geostationary transfer orbit on the example of the Foresail-2mission. Foresail-2 is a planned 6U CubeSat mission to the Earth radiation belts and is intended to use consumer-grade electronics components. In this harsh environment, most semiconductor devices require radiation shielding. The Space EnvironmentInformation System of the European Space Agency was used to analyse expected particle spectra along the planned orbit through the radiation belts. These particle spectra were then used in Monte-Carlo simulations based on the Geant4 particle transport toolkit to simulate the performance of different shielding configurations. Several thousand multilayer shielding configurations were simulated to optimise the material composition and layer structure of multilayer shielding. The best multilayer configurations against the combined proton and electron spectra of the Earth’s radiation belts use materials with low proton numbers on top of materials with high proton numbers and can significantly outperform conventional aluminium shielding. However, the usage of alternative materials might introduce significant overhead in the design and manufacturing of the satellite structure. Additionally, the influence of satellite structure geometry and openings in the shield was analysed. Even a 1 cm2 opening in the shield can increase the total ionising dose received by electronic components over a mission lifetime by more than an order of magnitude. In conclusion, the work recommends an aluminium body of 6 mm or equivalent multilayer shielding for the Foresail-2 mission to reduce the radiation level to a tolerable level for consumer-grade electronics, while openings in the satellite body should be avoided or covered up with additional shielding. / FORESAIL
|
18 |
Exposure Monitoring and Dosimetry - Optimizing Radiation Protection in Interventional Cardiology / Exponeringsanalys och Dosimetri - Optimering av praktiskt strålskydd inom interventionell kardiologiPettersson, Amanda January 2023 (has links)
During interventional cardiology (IC), medical staff are exposed to scattered ionizing radiation from the patient, potentially leading to various radiation-induced health effects. Therefore, shielding devices are routinely used to reduce occupational exposure during IC procedures. This study explores how the positioning of shielding devices impacts radiation protection efficiency in clinical scenarios. The study aims to determine optimal setups and potential pitfalls that might significantly reduce the efficiency of the shielding devices. It also explores the relationship between DICOM-based production data, clinical observations, and phantom-based measurements to add knowledge to the research field of radiation protection in IC. Clinical DICOM-based production data from 4976 procedures were analyzed to identify C-arm projection angles used during different procedure types. This data and the results of an observational study were used to determine a scattered radiation measurement setup. A survey meter was used to measure air kerma at seven heights in the operator position while an anthropomorphic phantom was irradiated. The measurements were distributed over seven projections with 56 position combinations of the shielding devices. A total of 3171 measurements were performed. The measurements suggest significant variations in the operator dose depending on the projection and how the shielding devices are positioned. The most optimal combination of shielding devices was achieved when placing the table-mounted shield along the table, the ceiling-suspended shield caudal close to the phantom, and without the patient drape. Conversely, the least optimal combination was achieved when placing the table-mounted shield flared out, the ceiling-suspended shield cranial 10 cm above the phantom, and without the patient drape. The air kerma rate for these two shielding setups with the LAO25/CAUD30 projection was reduced from 0.19 μGy/s to 0.05 μGy/s at 110 cm from the floor. This height was shown to be the hardest to properly shield. Despite the implementation of the most optimal shielding combination, it is evident that certain heights present difficulties in effectively protecting the operator from scattered radiation.
|
19 |
Optimization of the Gamma Knife Treatment Room Design / Optimering av Designen av Gammaknivens BehandlingsrumNygren, Nelly January 2021 (has links)
Radiation shielding is a central part of the design of treatment rooms for radiation therapy systems. The dose levels that medical staff and members of the public can be exposed to outside the treatment rooms are regulated by authorities and influence the required wall thicknesses and possible locations for the systems. Several standard methods exist for performing shielding calculations, but they are not well adapted to the stereotactic radiosurgery system Leksell Gamma Knife because of its self-shielding properties. The built-in shielding makes the leakage radiation anisotropic and generally have lower energy than the primary radiation from the Gamma Knife's cobalt sources. Oversimplifications made in the standard shielding calculation methods regarding the field can lead to excessively thick shielding and limit the number of suitable locations for the system. In this thesis project, a simulation-based dose calculation algorithm was developed, that uses Monte Carlo-generated data in two steps. The algorithm uses a phase space to accurately describe the radiation field around the Gamma Knife. Information about individual photons in the field is then combined with a generated library of data describing the resulting dose outside a wall depending on the wall thickness and the photon energy. The dose calculation algorithm is fast enough to be integrated into optimization processes, in which the algorithm is used iteratively while varying room design parameters. Demonstrated in this report is a case with a room of fixed size, in which the Gamma Knife's position and the walls' thicknesses are varied, with the aim to find the room design resulting in the minimum wall thicknesses needed to achieve acceptable dose levels outside. The results in this thesis indicate that the dose calculation algorithm performs well and could likely be used in more complex optimizations with more design variables and more advanced design goals. / Strålsäkerhet är en viktig aspekt vid uppförandet av behandlingsrum för strål-terapisystem. Strålningsnivåerna som sjukvårdspersonal och allmänheten kan exponeras för utanför behandlingsrummet regleras av myndigheter och påverkar vilken väggtjocklek som behövs och vilka platser som är lämpliga att placera systemen på. Flertalet metoder för strålskyddsberäkning existerar, men de är inte väl anpassade till det stereotaktiska radiokirurgiska systemet Leksell Gamma Knife, eftersom det har ett inbyggt strålskydd. Det inbyggda strålskyddet gör att strålfältet runt Gamma Knife är anisotropt och generellt har lägre energi än primärstrålningen från systemets koboltkällor. Förenklingar som görs rörande strålfältet i flera existerande metoder för strålskyddsberäkning kan leda till att överdrivet tjocka strålskydd används eller begränsa antalet lämpliga platser att placera systemet på. I detta projekt utvecklades en dosberäkningsalgoritm, som i två steg använder data genererad genom Monte Carlo-simuleringar. Algoritmen använder ett fasrum för att detaljerat beskriva strålfältet runt Gamma Knife. Information om enskilda fotoner i fältet används sen i kombination med ett genererat bibliotek av data som beskriver det dosbidrag som en foton bidrar med utanför behandlingsrummet, baserat på fotonens energi och väggarnas tjocklek. Dosberäkningsalgoritmen är snabb nog att integreras i optimeringsprocesser där den används iterativt samtidigt som rumsdesignparametrar varieras. I denna rapport demonstreras ett fall med ett rum av bestämd storlek, där positionen av Gamma Knife i rummet och väggarnas tjocklekar varieras. Optimeringens syfte i exemplet är att hitta den rumsdesign som med de minsta väggtjocklekarna resulterar i acceptabla strålningsnivåer utanför rummet. Resultaten tyder på att dosberäkningsalgoritmen sannolikt kan användas i mer komplexa optimeringar med fler designvariabler och mer avancerade designmål.
|
20 |
Use of raw Martian and Lunar soils for surface-based reactor shieldingChristian, Jose L. 1963- 13 October 2014 (has links)
For several decades, the idea of flying and landing a less-than-man-rated nuclear reactor for planetary surface applications has been considered. This approach promises significant mass savings and therefore reduction in launch cost. To compensate for the lack of shielding, it has been suggested the use of in-situ materials for providing radiation protection. This would take the form of either raw dirt walls or processed soil materials into blocks or tile elements. As a first step in determining the suitability of this approach, it is necessary to understand the neutron activation characteristics of these soils. A simple assessment of these activation characteristics was conducted for both Martian and Lunar soils using ORIGEN2.2. An average composition for these soils was assumed. As a baseline material, commonly used NBS-03 concrete was compared against the soils. Preliminary results indicate that over 2.5 times more gamma-radiation production of these soils vs. concrete took place during the irradiation phase (a baseline of 2.4 x 1011 neutrons/sec-cm2 was assumed). This was due primarily to radiative capture on Na23 and Mn55 and subsequent decay of their activation products. This is does not necessarily disqualify these materials as potential shielding material since the -radiation output was only in the order of 4.2 x 108 photons/cm3-sec. Furthermore, these soils did not show any significant activity after shutdown of the neutron source (the reactor), since all activation products had very short half lives. Their performance in this area was comparable to that of NBS-03 concrete. / text
|
Page generated in 0.1287 seconds