• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 51
  • 9
  • 7
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 258
  • 258
  • 82
  • 77
  • 76
  • 74
  • 67
  • 66
  • 51
  • 41
  • 40
  • 36
  • 33
  • 32
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Model Refinement and Reduction for the Nitroxide-Mediated Radical Polymerization of Styrene with Applications on the Model-Based Design of Experiments

Hazlett, Mark Daniel 21 September 2012 (has links)
Polystyrene (PS) is an important commodity polymer. In its most commonly used form, PS is a high molecular weight linear polymer, typically produced through free-radical polymerization, which is a well understood and robust process. This process produces a high molecular weight, clear thermoplastic that is hard, rigid and has good thermal and melt flow properties for use in moldings, extrusions and films. However, polystyrene produced through the free radical process has a very broad molecular weight distribution, which can lead to poor performance in some applications. To this end, nitroxide-mediated radical polymerization (NMRP) can synthesize materials with a much more consistently defined molecular architecture as well as relatively low polydispersity than other methods. NMRP involves radical polymerization in the presence of a nitroxide mediator. This mediator is usually of the form of a stable radical which can bind to and disable the growing polymer chain. This will “tie up” some of the free radicals forming a dynamic equilibrium between active and dormant species, through a reversible coupling process. NMRP can be conducted through one of two different processes: (1) The bimolecular process, which can be initiated with a conventional peroxide initiator (i.e. BPO) but in the presence of a stable nitroxide radical (i.e. TEMPO), which is a stable radical that can reversibly bind with the growing polymer radical chain, and (2) The unimolecular process, where nitroxyl ether is introduced to the system, which then degrades to create both the initiator and mediator radicals. Based on previous research in the group, which included experimental investigations with both unimolecular and bimolecular NMRP under various conditions, it was possible to build on an earlier model and come up with an improved detailed mechanistic model. Additionally, it was seen that certain parameters in the model had little impact on the overall model performance, which suggested that their removal would be appropriate, also serving to reduce the complexity of the model. Comparisons of model predictions with experimental data both from within the group and the general literature were performed and trends verified. Further work was done on the development of an additionally reduced model, and on the testing of these different levels of model complexity with data. The aim of this analysis was to develop a model to capture the key process responses in a simple and easy to implement manner with comparable accuracy to the complete models. Due to its lower complexity, this substantially reduced model would me a much likelier candidate for use in on-line applications. Application of these different model levels to the model-based D-optimal design of experiments was then pursued, with results compared to those generated by a parallel Bayesian design project conducted within the group. Additional work was done using a different optimality criterion, targeted at reducing the amount of parameter correlation that may be seen in D-optimal designs. Finally, conclusions and recommendations for future work were made, including a detailed explanation of how a model similar to the ones described in this paper could be used in the optimal selection of sensors and design of experiments.
72

Application of radioisotopes to polymer chemistry : investigation of radiolabelled atom transfer polymerization

Long, Mark January 2016 (has links)
The use of the radioisotope 14C in polymer chemistry has been reviewed, showing how it has been used to investigate the mechanistic aspects of free radical polymerizations, and the use of polymers in other scientific disciplines such as environmental, physical, chemical and medical sciences. An overview of the application of fluorescent spectroscopy to polymer chemistry is also reported. It covers the fundamentals of fluorescence chemistry, its application and the potential problems of the use of fluorescent labels in polymer chemistry. The application of radioisotopes to atom transfer radical polymerisation (ATRP) to investigate the fate of initiators used in the ATRP of 2-hydroxypropyl methacrylate (2- HPMA) is also reported. By using 14C radiolabelled initiators, radio thin layer chromatography (Radio TLC) and the liquid scintillation counting of fractions, collected from gel permeation chromatography (GPC), the fate of the initiating species where monitored during the polymerization of samples of 14C poly(2-HPMA), with degrees of polymerization of 10, 25 and 50 was assessed. GPC and Radio TLC, data showed that there was an under-utilisation of the initiator, 16% clearly observable at high monomer conversion (>97%), which could result in the initiation of new chains at monomer conversions of >90% and as late as 300 minutes after the polymerisation had started. These results contradict ATRP theory which states all initiator is consumed immediately at the commencement of the polymerization. 14C poly(2-HPMA) was also used to determine the efficiencies of the polymer purification methods, flash chromatography and precipitation. Although repeated precipitation increased fractionation, it was shown to be superior to flash chromatography in removing residual unreacted or terminated initiator. Finally, the possible effects of fluorescent labels on adsorption of low molecular weight 14C poly(DEAEMA) onto real surfaces (filter paper, photo graphic paper and hair) from aqueous solutions at pH=2 were investigated. Three low molecular weight samples of 14C poly(DEAEMA) were prepared by ATRP using 14C labelled initiators synthesized from alcohols of increasing hydrophobicity i.e. methyl, benzyl and 9-hydroxyfluorene (fluorescent label). The levels of adsorption were determined using phosphor imaging, oxidation of organic samples and liquid scintillation counting. Results indicated that differences in the chemistry of the polymer end groups can affect adsorption of the 14C poly(DEAEMA) and polymer assembly at the air/water interface. There was greater adsorption of polymers with a fluorescent end group. The increasing deposition was attributed to the increasing hydrophobicity of the polymer end group. Moreover, the controlled placement of one fluorescent label per polymer chain can influence the polymer’s properties, prompting the question, is the use of fluorescent groups to assess polymer behaviour and properties viable?
73

Síntese e caracterização de macrômeros e copolímeros de óleo de semente de seringueira / Synthesis and characterization of macromers and copolymers of rubber seed oil

Robles, Sebastián Gómez 18 August 2018 (has links)
Orientador: Maria Isabel Felisberti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-18T09:32:15Z (GMT). No. of bitstreams: 1 Robles_SebastianGomez_M.pdf: 2542883 bytes, checksum: 41418f1c146d0909e848014acbd2b608 (MD5) Previous issue date: 2011 / Resumo: A procura de novos materiais poliméricos oriundos de matérias primas renováveis é de grande importância científica, tecnológica e ambiental, dado que elas podem substituir as de origem na cadeia do petróleo, além de contribuir para a diminuição de gases de efeito estufa e o acúmulo de lixo plástico. Os óleos vegetais são matérias primas renováveis constituídas principalmente de triglicerídeos, cujas características estruturais fornecem uma ampla gama de possibilidades sintéticas para a obtenção de diversos materiais poliméricos, os quais têm apresentado propriedades semelhantes àqueles polímeros convencionais oriundos do petróleo, assim como outras propriedades interessantes como amortecimento mecânico e memória de forma. O grande potencial brasileiro para a produção de óleo de semente de seringueira (OSS), aliado ao fato de que ele não compete com a indústria alimentar, faz deste óleo uma alternativa importante para a obtenção de novos polímeros com benefícios econômicos e ambientais significativos. Neste trabalho foi sintetizada uma série de copolímeros vinílicos de estireno e macrômeros de OSS. Estes macrômeros foram obtidos pela rota sintética constituída de duas etapas: glicerólise do óleo seguida de maleinização para obtenção de monômeros de elevada massa molar e funcionalidade variando entre 2 e 4. Os produtos intermediários desde o OSS até os macrômeros foram caracterizados por CCD, FT-IR, espalhamento Raman e RMN de H e C. Foram obtidos copolímeros de OSS-estireno variando as condições de síntese (temperatura, tempo e composição) visando o estudo do efeito destas variáveis na estrutura e propriedades dos materiais. Os copolímeros sintetizados foram caracterizados por ensaios de intumescimento e extração de solúveis, DMA, TG/DTG, ensaios de degradação hidrolítica e RMN de H e GPC da fração solúvel. Encontrou-se que os copolímeros sintetizados possuem uma estrutura complexa dependente da composição, tempo e temperatura de reação, sendo caracterizada principalmente por uma rede tridimensional com oligômeros e/ou polímeros inseridos nela. Alguns dos polímeros obtidos apresentaram propriedades interessantes para serem aplicados como isolantes acústicos / Abstract: The search for new polymeric materials from renewable raw materials is of great scientific, technological and environmental importance, since they can replace those made from petroleum, and contribute to reducing greenhouse gases and the accumulation of plastic waste. Vegetable oils are renewable resources consisting mainly of triglycerides, whose structural features provide a wide range of synthetic possibilities to obtain various polymeric materials, which have shown similar properties to those of conventional polymers from petroleum, as well as other interesting properties such as damping and shape memory. The great potential of Brazil for the production of rubber seed oil (RSO), coupled with the fact that it does not compete with the food industry, makes this oil an important alternative to obtain new polymers with significant economic and environmental benefits. In this work we synthesized a series of copolymers of styrene and vinyl macromers of RSO. These macromers were obtained by synthetic route consists of two steps: glycerolysis oil followed by maleinization to obtain monomers with high molecular weight and functionality ranging from 2 to 4. Intermediate products from the RSO to the macromers were characterized by TLC, FT-IR, Raman, H NMR and C NMR. Copolymers of RSO and styrene were obtained by varying the synthesis conditions (temperature, time and composition) in order to study the effect of these variables on the structure and properties of the materials. The copolymers were characterized by swelling and extraction of soluble fraction, DMA, TG/DTG, hydrolytic degradation and H NMR and GPC of the soluble fraction. It was found that the copolymers possess a complex structure dependent on the composition, temperature and reaction time and characterized by a three-dimensional network with oligomers and/or polymers inside it. Some of the resulting polymers showed interesting properties to be used as soundproofing / Mestrado / Quimica Organica / Mestre em Química
74

Kinetik der radikalischen Polymerisation von Monomeren mit mesogener Seitengruppe in isotroper und anisotroper Lösung / Kinetics of the Radical Polymerization of Monomers with a Mesogenic Side Group in Isotropic and Anisotropic Solutions

Groschopp, Alex 05 February 2018 (has links)
No description available.
75

Radical Polymerization Kinetics of Non-Ionized and Fully-Ionized Monomers Studied by Pulsed-Laser EPR

Kattner, Hendrik 06 June 2016 (has links)
No description available.
76

Free radical emulsion polymerization of ethylene / Polymérisation radicalaire de l’éthylène en émulsion

Billuart, Guilhem 23 March 2015 (has links)
Les travaux présentés dans cette thèse portent sur la polymérisation radicalaire de l'éthylène en émulsion, dans des conditions douces (P < 250 bar et T < 90 °C). Tout d'abord, l'homopolymérisation de l'éthylène a été étudiée. Des latex stables de polyéthylène présentant des taux de solide relativement élevés (30 %) ont été obtenus. Pour cela, deux systèmes différents d'amorçage et de stabilisation (cationique et anionique) ont été employés. Ces latex peuvent trouver des applications comme revêtements hydrophobes (par exemple du papier). L'étude des propriétés thermiques des latex a mis en évidence des phénomènes de cristallisation du polyéthylène à basse température, dû à son confinement dans les nanoparticules. Cela a une forte influence sur les morphologies finales des particules. D'autre part, la copolymérisation radicalaire de l'éthylène en émulsion a été étudiée. Les comonomères utilisés sont le styrène, l'acrylate de butyle, le méthacrylate de méthyle et l'acétate de vinyle qui différent par leur solubilité dans l'eau et leurs rapports de réactivité de copolymérisation avec l'éthylène. La composition des copolymères obtenus influence leurs propriétés thermiques (Tg, Tf). Des latex stables de copolymères de compositions variées ont pu ainsi être synthétisés. Ce travail en homo- et copolymérisation a souligné la complexité des milieux de polymérisation en émulsion impliquant un monomère gazeux supercritique comme l'éthylène / In this work, the free radical emulsion polymerization of ethylene under mild conditions (P < 250 bar and T < 90 °C) was investigated. Ethylene homopolymerization was first studied. Stable polyethylene latexes of significantly high solids content (30 %) were produced. This was achieved by the use of two different initiating and stabilizing systems (cationic and anionic). These latexes could be applied as hydrophobic coatings (e.g. on paper). Investigation of the thermal properties of the latexes evidenced crystallization phenomena at low temperatures, owing to PE confinement in the nanoparticles, which strongly impacted their final morphologies. Free radical emulsion copolymerization of ethylene was then studied. The investigated comonomers were styrene, butyl acrylate, methyl methacrylate and vinyl acetate. They differ in their reactivity ratios to ethylene and their water solubility. The composition of the obtained copolymers had a strong influence on their thermal properties (Tg, Tm). Stable latexes containing copolymers of various compositions were thus synthesized. This work on homo- and copolymerization evidenced the complexity of the polymerization media involving a gaseous supercritical monomer such as ethylene
77

Controlled synthesis of polyvinylamine-based (co)polymers for gene transfection / Synthese contrôlée de copolymères à base de polyvinylamine pour le transfert de gènes

Dréan, Mathilde 10 October 2016 (has links)
Le transfert de gènes consiste en l’introduction d’acides nucléiques au sein de cellules afin de modifier leur activité dans un but essentiellement thérapeutique. Pour préserver le matériel génétique de toute dégradation, il faut recourir à des vecteurs. Parmi ceux-ci, les polymères cationiques sont très prometteurs, en particulier, la polyéthylènimine, considérée comme le vecteur non-viral de référence. Néanmoins, il présente une cytotoxicité élevée. Ainsi, de nombreuses recherches ont pour but d’identifier et de développer de nouveaux polymères combinant efficacité de transfection et haute viabilité cellulaire. Cette thèse vise le développement de méthodes d’ingénierie macromoléculaire donnant accès à une large gamme de dérivés à base de polyvinylamine et l’évaluation de leurs performances en tant que vecteurs de transfection. Différentes techniques de polymérisation radicalaire conventionnelle et contrôlée ont été mises au point afin de synthétiser des (co)polymères à base de polyvinylamine constitués d’amines primaires et secondaires. L’efficacité du transfert d’ADN plasmidique et la viabilité cellulaire ont été évaluées sur des cellules HeLa. L’influence de différents paramètres macromoléculaires sur les performances de transfection a été investiguée. Cette étude a permis de démontrer que certains dérivés de polyvinylamine possédaient une efficacité de transfection aussi élevée que la PEI tout en étant moins toxique. De manière générale, ce travail rend compte du haut potentiel des (co)polyvinylamines en tant que vecteurs pour le transfert de gènes. / Gene transfection consists in the introduction of genetic materials (DNA or RNA) in cells in order to modulate the cell activity, with therapeutic purposes in most cases. To deliver the genetic materials into cells without degradation, vectors are necessary. Among them, cationic polymers are promising candidates. For instance, polyethylenimine has emerged as a gold standard due to its high transfection ability. Nevertheless, this polymer exhibits high cytotoxicity, and current research aims at identifying and developing new polymers with improved cell viability and high gene transfer efficiency. In this context, the aim of this thesis was to develop efficient macromolecular engineering tools to prepare a library of polyvinylamine-containing (co)polymers and to evaluate their performances as DNA carriers. Consequently, free radical polymerization (FRP) and controlled radical polymerization (CRP) have been explored and a series of (co)polyvinylamines, containing primary and secondary amines, as well as vinylimidazole and guanidine moieties, have been synthesized. The transfection efficiency of plasmid DNA (pDNA) and cell viability were evaluated on HeLa cells. The influence of different macromolecular parameters such as molar mass, molar mass distribution and composition, was also studied. The most promising polymers for pDNA transfection were also tested for siRNA delivery and on other cell lines. Overall, several polymers were competitive with PEI regarding the transfection efficiency but were much less toxic. (Co)polyvinylamines, which have often been disregarded for transfection purposes, should definitely be considered as valuable gene carriers.
78

Polymères linéaires et branchés fonctionnels par synthèse radicalaire et thiochimie / Functional linear and branched polymers by radical synthesis and thiochemistry

Le Neindre, Morgane 17 December 2014 (has links)
La chimie des thiols est un outil puissant et polyvalent pour la préparation de polymères et de matériaux fonctionnels. La fonction thiol est cependant incompatible avec la polymérisation radicalaire. Au cours de cette thèse, l'évaluation de fonctions thiocarbonyl et thioester en tant que groupements protecteurs de thiols lors de polymérisations radicalaires contrôlées a montré que le groupement xanthate, ou dithiocarbonate, est un excellent groupement protecteur. Des copolymères polythiol linéaires bien définis ont ainsi pu être synthétisés à partir d'un monomère méthacrylate portant une fonction xanthate. Les polythiols pouvant conduire à des réactions de réticulation via la formation de ponts disulfure, des séquences monotopes de déprotection par aminolyse et fonctionnalisation des polythiols via différentes réactions thiol-X ont ensuite été mises au point. Les monomères fonctionnels xanthate ont ensuite été mis à profit pour synthétiser des polymères branchés. L'aminolyse d'une partie des xanthates avant la polymérisation permet en effet d'obtenir des monomères thiol et ainsi d'introduire du transfert aux thiols lors de la polymérisation. Les polymères branchés fonctionnels obtenus présentent des viscosités plus faibles, ainsi qu'une structure plus compacte, que leurs analogues linéaires. / Thiol chemistry is a versatile and powerful tool for the preparation of functional polymers and materials. However, thiols are incompatible with radical polymerization. In this thesis, thiocarbonyl and thioester moieties were evaluated as thiol protecting groups for controlled radical polymerizations. The xanthate, or dithiocarbonate, moiety proved to be the best all-around protecting group, and well-defined polythiol copolymers were prepared from a methacrylate monomer carrying a xanthate moiety. As polythiol are prone to gel formation due to the formation of disulfide bridges, one-pot deprotection and functionalization were carried out via aminolysis and subsequent functionalization with different thiol-X reactions. The functional monomer carrying a xanthate group was then used to prepare branched polymers. Partial aminolysis of the xanthate moieties leads to monomers carrying a thiol group, which introduced transfer to thiol during the polymerization. The functional branched polymers obtained have lower viscosities and a more compact structure than their linear analogues.
79

Development of new silicone-based biomaterials

Robert-Nicoud, Ghislaine January 2012 (has links)
In the present thesis, we propose a modification of silicone surfaces using the controlled deposition of amphiphilic block copolymers from aqueous colloidal dispersions. The surface modifiers are based on poly(dimethylsiloxane) (PDMS) as the hydrophobic part, in order to allow a good compatibility with PDMS artefacts, and poly(glycerol monomethacrylate) (PGMMA) as the hydrophilic block, since this polymer has demonstrated good biocompatibility and low cell attachment. The hydroxyl groups present on PGMMA offer the possibility of further surface functionalization. We have demonstrated the convenience of preparing well-defined amphiphilic block copolymers of PDMS and PGMMA (which we refer to as Sil-GMMA polymers) via atom transfer radical polymerization using a protection/deprotection route (i.e. the silylation of GMMA alcohols groups). Depending on the ratio between hydrophobic and hydrophilic blocks, Sil-GMMA copolymers can self-assemble into micellar and other colloidal structures. Diffusion ordered nuclear magnetic resonance experiments have shown that those micelles did not interact with albumin, suggesting a “stealth” behaviour. Once a library of Sil-GMMA polymers with various block ratio was prepared, the adsorption of Sil-GMMA colloidal dispersions in water/ethanol on PDMS surfaces by simple physisorption was studied. As expected, high PDMS content favoured Sil-GMMA adsorption on silicone surfaces. The presence of our surface modifiers on silicone surfaces was confirmed by a decrease in water contact angle and spectroscopy techniques. We have shown that the surface coatings were stable upon storage in water. Additionally, fibrinogen adsorption was decreased by Sil-GMMA adsorption while albumin adsorption appeared to increase. The preparation of surfaces repellent to fibrinogen and interacting with a “passivating” protein such as albumin is promising. At the same time, this thesis also reports preliminary investigations on the use of enzymes in order to incorporate new functionality to GMMA containing polymers. Although enzymatic activity was observed when using PGMMA instead of glycerol with two different enzymes (glycerol kinase and glycerol dehydrogenase), PGMMA conversions were always low (< 2%).
80

Modelagem matematica da polimerização via radical livre controlada usando mecanismo RAFT (transferencia de cadeia reversivel por adição-fragmentação) / Mathematical modeling of living free radical polymerization using mechanism (reversible addition-fragmentation chain transfer)

Franco, Ivan Carlos, 1976- 15 February 2007 (has links)
Orientador: Liliane Maria Ferrareso Lona / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-07T23:37:08Z (GMT). No. of bitstreams: 1 Franco_IvanCarlos_M.pdf: 1044560 bytes, checksum: 8f4fdd66626d63245a2131f55b09f807 (MD5) Previous issue date: 2007 / Resumo: Polimerização via radical livre controlada (CRP) tem recebido cada vez mais atenção como uma técnica para produção de polímeros com micro estrutura altamente controlada. Em particular, distribuições de pesos moleculares estreitas são obtidas, com polidispersidade muito próxima de um, sendo um campo promissor na ciência de polimerização com estruturas controladas. Um importante requisito para engenharia de polimerização e desenvolvimento de polímeros é a construção de modelos matemáticos úteis, especialmente aqueles de natureza mecanística, com validação experimental. O objetivo deste trabalho é o desenvolvimento de modelos matemáticos abrangentes para simulação de polimerização para mecanismo RAFT. Metacrilato de metila em benzeno a 60°C na presença de 2,2-cianopropil 1- pirrolecarboditioato (agente RAFT) e com AIBN como iniciador em um reator batelada será considerado como estudo. Os pesos moleculares foram calculados utilizando o método dos momentos. Uma análise paramétrica considerando o efeito da concentração de iniciador e da concentração de agente RAFT foi realizada. O modelo predito está de acordo com os dados experimentais da literatura, o que atesta sua validade para ser utilizado no controle de estruturas poliméricas obtidas no processo RAFT / Abstract: Lately, Living Free Radical Polymerization (LFRP) has been detached as a technique for the production of polymers with highly controlled microstructure. In particular, narrow distributions of molecular weights are obtained, with polydispersity values next to one. So, this technique is a promising field in the science of polymerization with controlled structures. An important requirement for engineering of polymerization and polymer development is the construction of useful mathematical models, especially those of mechanistic nature, with experimental validation. The objective of this work was to develop comprehensive mathematical models to simulate polymerization from RAFT mechanism. Methyl Methacrylate in benzene at 60°C in the presence of 2-cyanoprop-2-yl 1-pyrrolecarbodithioate (agent RAFT) and with AIBN as the initiator in a batch reactor was considered. The molecular weights have been calculated using the method of moments. A parametric analysis considering the effect of the initiator and agent RAFT concentrations was performed. Models prediction showed good agreements with experimental data from literature, what certifies its validity in being used in the control of polymeric structures in RAFT process / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química

Page generated in 0.1474 seconds