• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 601
  • 80
  • 60
  • 25
  • 24
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1030
  • 1030
  • 312
  • 276
  • 179
  • 155
  • 150
  • 142
  • 124
  • 120
  • 105
  • 101
  • 101
  • 100
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

SPATIAL-TEMPORAL DATA ANALYTICS AND CONSUMER SHOPPING BEHAVIOR MODELING

Yan, Ping January 2010 (has links)
RFID technologies are being recently adopted in the retail space tracking consumer in-store movements. The RFID-collected data are location sensitive and constantly updated as a consumer moves inside a store. By capturing the entire shopping process including the movement path rather than analyzing merely the shopping basket at check-out, the RFID-collected data provide unique and exciting opportunities to study consumer purchase behavior and thus lead to actionable marketing applications.This dissertation research focuses on (a) advancing the representation and management of the RFID-collected shopping path data; (b) analyzing, modeling and predicting customer shopping activities with a spatial pattern discovery approach and a dynamic probabilistic modeling based methodology to enable advanced spatial business intelligence. The spatial pattern discovery approach identifies similar consumers based on a similarity metric between consumer shopping paths. The direct applications of this approach include a novel consumer segmentation methodology and an in-store real-time product recommendation algorithm. A hierarchical decision-theoretic model based on dynamic Bayesian networks (DBN) is developed to model consumer in-store shopping activities. This model can be used to predict a shopper's purchase goal in real time, infer her shopping actions, and estimate the exact product she is viewing at a time. We develop an approximate inference algorithm based on particle filters and a learning procedure based on the Expectation-Maximization (EM) algorithm to perform filtering and prediction for the network model. The developed models are tested on a real RFID-collected shopping trip dataset with promising results in terms of prediction accuracies of consumer purchase interests.This dissertation contributes to the marketing and information systems literature in several areas. First, it provides empirical insights about the correlation between spatial movement patterns and consumer purchase interests. Such correlation is demonstrated with in-store shopping data, but can be generalized to other marketing contexts such as store visit decisions by consumers and location and category management decisions by a retailer. Second, our study shows the possibility of utilizing consumer in-store movement to predict consumer purchase. The predictive models we developed have the potential to become the base of an intelligent shopping environment where store managers customize marketing efforts to provide location-aware recommendations to consumers as they travel through the store.
502

Radio Frequency Thermal Treatment of Liver Tumours : -Influence of Blood Perfusion and Large Vessels

Andersson, Per January 2008 (has links)
Radio frequency ablation (RFA) is a commonly used minimally invasive method of treating liver cancer tumours which utilises RF current for heating tumour tissue up to a lethal temperature. RF current is generated by a power generator and applied to the tumour by an electrode which is inserted into the tumour either during percutaneous or open surgery. RFA is a method that has great advantages compared to traditional surgical resection of tumours due to minimal invasiveness, it can be used for a greater number of patients and enables repeated treatments. Even though there are many advantages coupled to RFA there are still some problems and difficulties associated with the method. One of these problems is the cooling effect from large vessel blood flow within the liver, the so called heat sink effect. The aim of this master thesis work has been to develop a theoretical finite element model of RFA within Comsol Multiphysics software. This theoretical model has been used to simulate blood perfusion effects on resulting ablation volume. The effects from different large vessel blood flow parameters has been investigated, these parameters are: blood flow velocity, blood vessel diameter and distance between blood vessel and RF electrode. A factorial design has been utilised to setup parameter levels for the different simulations. A linear- and a second degree regression model has been calculated based on simulation results. The parameter with largest impact on simulative ablation volume and the interaction effects between the parameters were determined from the regression model coefficients. In addition to this has two simulations been performed, modelling perfused- and unperfused liver tissue, in order to investigate the effects resulting from microvascular perfusion. The result shows that the parameter with largest impact on simulative ablation volume are the distance, it was also shown that there are a small interactional effects between diameter and distance, where a small distance increases the effect from a varying diameter. Modelled microvascular perfusion was shown to give a decrease in simulative ablation volume. A shortage of this master thesis work is the lack of experimental verification of the developed model.
503

Design and optimization of RF test structures for mm-wave circuit design

Mills, Richard P., III 18 November 2011 (has links)
This work discusses a methodology developed for robust RF test structure design for SiGe HBTs operating at mm-wave frequencies.
504

Radio-Frequency thermal treatments for agri-food products

Orsat, Valérie. January 1999 (has links)
Although radio-frequency (RF) methods have been used for decades in many heating and drying processes, there is still a need for more engineering design data related to the design of the applicators and the performance of these systems before costly prototypes are built. Energy, temperature, and the effect produced by the high frequency field parameters on biological materials need to be examined with regard to their effects on the resulting processing requirements. / Wheat-seed infection by a fungus such as Fusarium graminearum can considerably lower the seed germination and the quality of the harvest. A study was thus conducted to determine the combined effect of different levels of RF power, temperature, and moisture content on the quality of seed-grade wheat and fungus inactivation. Similar treatment combinations were studied with seed-grade soybean in view on improving germination. With higher power, higher temperature (90°C) and higher moisture content (14%), the fungus mortality significantly increased, with a fungal vigour of less than 0.1, and the germination quality of the seeds decreased to a germination vigour below 0.3. For soybean seeds, only treatments of low RF intensity (60°C) were successful in improving germination vigour especially at lowest moisture content typically found in stored seeds. / RF treated wheat was studied to identify the relationship between heating conditions and grain quality categorized in terms of kernel viability and structural damage. / The potential of an RF thermal treatment to improve and extend the storability of vacuum packaged carrot sticks was investigated. The results have shown that it is possible to treat carrot sticks to 60°C in less than 2 min to reduce the initial microbial load. The RF-treatments maintained colour, the vacuum of the packages, and the excellent taste of the carrot sticks. / RF heating was studied for the pasteurization of prepared samples of ham. The ham samples were brought to internal temperatures of 75 and 85°C, by RF heating with a 10 min residence time. The study indicates that radio-frequency heating can improve the storability of re-packed hams by reducing the bacterial load, reducing moisture loss during storage and maintaining an overall greater product quality. (Abstract shortened by UMI.)
505

Pulsed RF Circuits for Ultra Wideband Communications and Radar Applications

El-Gabaly, AHMED 23 August 2011 (has links)
This thesis explores the design of fast-settling pulse generators and pulsed low noise amplifiers (LNAs) for Ultra-Wideband (UWB) applications. These components are critical in pulsed UWB transceivers, and a high energy efficiency is sought without adversely affecting RF performance and functionality. To this end, new pulse generators with a subnanosecond settling time and a low energy consumption of only a few picojoules per pulse are targeted. Moreover, a novel pulsed LNA is investigated for a low power consumption that can be scaled with the duty cycle. First, an energy-efficient tunable pulse generator is proposed for high-data-rate 3.1-10.6 GHz UWB applications. A current-starved ring oscillator is quickly switched on and off, and the amplitude envelope is shaped using a passive attenuator. The energy consumption per pulse is below 4.2 pJ while the pulse amplitude is 150 mV, yielding a high energy efficiency. A quadrature pulse generator is then presented for 22-29 GHz UWB applications with a settling time below 0.5 ns. An inductor-capacitor (LC) oscillator is quickly switched on and off with a new technique, and the amplitude envelope is shaped using a variable passive attenuator. The energy consumption per pulse is only 6.2 pJ, and the pulse amplitude is more than 240 mV, yielding the highest energy efficiency reported to date in CMOS. Next, a 3-10 GHz pulsed ring oscillator that offers direct quadrature phase modulation is demonstrated. Current impulses are injected into the oscillator to enable fast startup and implement quadrature phase modulation. The energy consumption and voltage swing varies from 13 pJ and 300 mV at 3 GHz to 18 pJ and 200 mV at 10 GHz respectively, yielding a high energy efficiency. Lastly, a fast switching noise cancelling LNA is proposed for 3.1-10.6 GHz UWB applications that settles within 1.3 ns for switching speeds as high as 200 MHz. Inductive peaking is introduced in the noise cancelling topology to achieve a sub-4dB flat noise figure and a high gain of 16.6 dB for frequencies up to 10 GHz. The average power consumption is also below 10 mW with a 50% duty cycle clock. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2011-08-23 15:29:58.93
506

High-frequency performance projections and equivalent circuits for carbon-nanotube transistors

Paydavosi, Navid Unknown Date
No description available.
507

RF power amplifiers and MEMS varactors

Mahdavi, Sareh. January 2007 (has links)
This thesis is concerned with the design and implementation of radio frequency (RF) power amplifiers and micro-electromechanical systems---namely MEMS varactors. This is driven by the many wireless communication systems which are constantly moving towards increased integration, better signal quality, and longer battery life. / The power amplifier consumes most of the power in a receiver/transmitter system (transceiver), and its output signal is directly transmitted by the antenna without further modification. Thus, optimizing the PA for low power consumption, increased linearity, and compact integration is highly desirable. / Micro-electromechanical systems enable new levels of performance in radio-frequency integrated circuits, which are not readily available via conventional IC technologies. They are good candidates to replace lossy, low Q-factor off-chip components, which have traditionally been used to implement matching networks or output resonator tanks in class AB, class F, or class E power amplifiers. The MEMS technologies also make possible the use of new architectures, with the possibility of flexible re-configurability and tunability for multi-band and/or multi-standard applications. / The major effort of this thesis is focused on the design and fabrication of an RF frequency class AB power amplifier in the SiGe BiCMOS 5HP technology, with the capability of being tuned with external MEMS varactors. The latter necessitated the exploration of wide-tuning range MEMS variable capacitors, with prototypes designed and fabricated in the Metal-MUMPS process. / An attempt is made to integrate the power amplifier chip and the MEMS die in the same package to provide active tuning of the power amplifier matching network, in order to keep the efficiency of the PA constant for different input power levels and load conditions. / Detailed simulation and measurement results for all circuits and MEMS devices are reported and discussed.
508

Silicon carbide RF-MEM resonators

Dusatko, Tomas A. January 2006 (has links)
A low-temperature (<300°C) method to fabricate electrostatically actuated microelectromechanical (MEM) clamped-clamped beam resonators has been developed. It utilizes an amorphous silicon carbide (SiC) structural layer and a thin polyimide spacer. The resonator beam is constructed by DC sputtering a tri-layer composite of low-stress SiC and aluminum over the thin polyimide sacrificial layer, and is then released using a microwave O 2 plasma etch. Deposition parameters have been optimized to yield low-stress films (<50MPa), in order to minimize the chance of stress-induced buckling or fracture in both the SiC and aluminum. Characterization of the deposited SiC was performed using several different techniques including scanning electron microscopy, EDX and XRD. / Several different clamped-clamped beam resonator designs were successfully fabricated and tested using a custom built vacuum system, with measured frequencies ranging from 5MHz to 25MHz. A novel thermal tuning method is also demonstrated, using integrated heaters directly on the resonant structure to exploit the temperature dependence of the Young's modulus and thermally induced stresses.
509

Optimized digital signal processing algorithms applied to radio communications.

Carter, Alan James Auchmuty. January 1992 (has links)
The application of digital signal processing to radio communications has come of age with the advent of low power, high speed microprocessors and over the past five years, various transceiver architectures, utilizing this new technology have been extensively researched. Due to the flexible nature of a software based transceiver, a myriad of possible applications exist and currently the emphasis is on the development of suitable algorithms. The principal aim of this research is the derivation of optimized digital signal processing algorithms applicable to three separate areas of radio communications. Optimized, as used by the author within this dissertation, implies a reasonable compromise between performance, complexity and numerical processing efficiency. This compromise is necessary since the algorithms are applied to a portable transceiver where power consumption, size and weight are limited. The digital signal processing algorithms described by this research is as follows:- 1. The derivation and assessment of a multirate speech amplitude modulation demodulator which exhibits low distortion (typically less than 2%) for a wide range of modulation indices, carrier frequency offsets and deviations. The demodulator is processing efficient and requires only five multiplications and five decisions for every output sample. 2. The derivation and assessment of a low sampling rate speech frequency modulation demodulator for signals whose bandwidth exceed quarter the sampling frequency. The demodulator exhibits low distortion (typically less than 2%) and is processing efficient requiring eighteen multiplications and three decisions for every output sample. 3. The derivation and assessment of a multirate single-sideband suppressed carrier automatic frequency control system which is a combination of a simple second order adaptive line enhancer and a digital phase-locked loop. The processing efficient automatic frequency control system is suited for low signal to noise power conditions, in both stationary and mobile communication channels. / Thesis (Ph.D.)-University of Natal, Durban, 1992.
510

RF compression of electron bunches applied to ultrafast electron diffraction

Chatelain, Robert P., 1982- January 2008 (has links)
The dynamics of atomic scale structures during structural change can be studied by Ultrafast Electron Diffraction (UED). The time resolution needed to reveal the fastest dynamics is 100 fs. Sub-angstrom structural resolution becomes possible with 1-1000 pC of charge necessary for diffraction pattern analysis during subtle structural changes. This combination of requirements cannot currently be realized due to the space-charge temporal broadening inherent to bunches of electrons of high fluence and short temporal duration. Simulations show that the incorporation of a specially designed Radio-Frequncy (RF) cavity into the UED apparatus removes this technical limitation. The RF cavity reverses the near linear position-momentum distribution of the temporally broadened electron bunch, causing the bunch to recompress itself as it propagates. It is found that our proposed method allows for sub-100 fs bunches with maximum charge of 0.6 pC, almost 3 orders of magnitude improvement over today's state of the art.

Page generated in 0.0428 seconds