• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 602
  • 80
  • 60
  • 25
  • 24
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1032
  • 1032
  • 312
  • 276
  • 179
  • 155
  • 150
  • 142
  • 124
  • 120
  • 105
  • 102
  • 101
  • 101
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Dynamic Categorization: What We Can Learn from the Emergent Arrangement of Physical Artifacts in Libraries

Krauss, Armin Martin 07 January 2011 (has links)
Radio frequency identification (RFID) is a technology used in many applications for the identification of objects. This thesis presents a concept of how libraries could use RFID technology to locate physical items within the library. The ability to locate items within the library changes the way users interact with physical material, creates new ways of user collaboration, and influences the ability to browse the shelves for physical items. Several implementation scenarios are presented in detail and implications on collaboration and browsing are analyzed.
472

Three Dimensional Radio Frequency Current Density Imaging

Wang, Dinghui 23 February 2011 (has links)
Biological tissues are generally conductive and knowing the current distribution in these tissues is of great importance in many biomedical applications. Radio frequency current density imaging (RF-CDI) is a technology that measures current density distributions at the Larmor frequency utilizing magnetic resonance imaging (MRI). RF-CDI computes the applied current density, J, from the non-invasively measured magnetic field, H, produced by J. The previously implemented RF-CDI techniques could only image a single slice at a time. The previous method for RF current density reconstruction only computed one component of J. Moreover, this reconstruction required an assumption about H, which may be easily violated. These technical constraints have limited the potential biomedical applications of RF-CDI. In this thesis, we address the limitations of RF-CDI mentioned above. First, we implement a multi-slice RF-CDI sequence with a clinical MRI system and characterize its sensitivity to MRI random noise. Second, we present a novel method to fully reconstruct all three components of J without relying on any assumption of H. The central idea of our approach is to rotate the sample by 180 degrees in the horizontal plane to collect adequate MR data from two opposite sample orientations to compute one component of J. Furthermore, this approach can be extended to reconstruct the other two components of J by adding one additional sample orientation in the horizontal plane. This method has been verified by simulations and electrolytic phantom experiments. We have therefore demonstrated for the first time the feasibility of imaging the magnitude and phase of all components of the RF current density vector. The work presented in this thesis is expected to significantly enhance RF-CDI to image biological subjects. The current density vector J or any component of J can be measured over multiple slices without the compromise of motions of organs and tissues caused by gravitational force, thanks to the method of horizontal rotations. In addition, the reconstruction of the complex conductivity of biological tissues becomes possible due to the current advance in RF-CDI presented here.
473

Radio frequency enhanced extraction of an anti-cancer compound from porous media

Izadifar, Mohammad 09 March 2009
Podophyllotoxin is a natural medicine possessing an outstanding anti-tumour activity. It can be extracted from the rhizome of Podophillum peltatum (American Podophyllum). Volumetric heating of a packed bed of particles including solvent during the extraction can eliminate the solvent pre-heating time and provide uniform and quick heating of the bed. RF-assisted extraction has a potential to be a promising extraction alternative over conventional methods. The characterization and assessment of RF-assisted extraction of podophyllotoxin is crucial. Thermal properties including specific heat capacity, thermal conductivity, and thermal diffusivity of a packed bed of P. peltatum with and without ethanol solutions were determined and the associated multiples regression equations were obtained for the purpose of thermal analysis of RF-assisted packed bed extraction process and related modeling investigations.<p> The dielectric properties of the packed bed of rhizome particles were measured from 10 to 30 MHz using a precision LCR meter and a liquid test fixture. The effects of temperature, particle moisture content, volumetric concentration of ethanol and bed porosity on the dielectric constant, dielectric loss factor and power penetration depth were investigated. The dielectric loss factor significantly increased with the particle moisture content for the beds with 100% and 70% ethanol but not with 30% ethanol. The dielectric loss factor was proportional to temperature directly and to frequency inversely. With 30% ethanol (and therefore 70% water), the dielectric loss factor of the bed dramatically increased compared to 70% and 100% ethanol. Porosity had a significant effect on the dielectric constant but not on the dielectric loss factor. The power penetration depth of a packed bed with 100% ethanol was significantly larger than those of the packed bed with 30% and 70% ethanol. Empirical regression equations were developed for simulation and design of an RF-assisted packed bed extraction of podophyllotoxin.<p> A RF-transparent batch reactor was made of glass filled Teflon and the extraction kinetics of podophyllotoxin was characterized. The effects of temperature, ethanol volumetric concentration, solid/liquid ratio, RF heating and particle moisture content on the extraction rate and yield of podophyllotoxin were investigated at different extraction conditions. A generalized diffusion mathematical model taking into account three major particle geometries was developed and coupled with genetic algorithm for determination of effective diffusivity and partition coefficient through an inverse simulation approach. The approach was first verified by reported experimental data of andrographolide extraction followed by determining the effective diffusivity and partition coefficient of podophyllotoxin for different conditions. The optimum batch extraction condition was achieved with 30% ethanol-water solution at 53¢XC. A prototype was developed for RF-assisted extraction of podophyllotoxin using two optical and RF-transparent reactors with horizontal and vertical orientations. Applying the optimum conditions obtained from batch experiments, the potential of RF heating for providing a uniform temperature in the packed bed was evaluated. The effect of solvent dielectric loss factor on uniform RF heating was investigated and the chemical effect of NaCl used for increasing dielectric loss factor of the solvent on podophyllotoxin was assessed. The horizontal packed bed demonstrated a large temperature gradient across the thickness of the bed during RF heating; however, a uniform RF heating was achieved when the vertical packed bed reactor was used for RF-assisted extraction of podophyllotoxin. The concentration of 2.5 g NaCl/L of the solvent at the temperature controller set point of 40aC provided a relatively good uniform temperature of 50aC within the bed. Evaluating three flow rates of 130, 160 and 200 ml/min for the solvent of 30% ethanol with 2.5 g NaCl/L indicated that the flow rate of 160 ml/min could provide better temperature overlap of four positions of the bed height.
474

Complexity Reduced Behavioral Models for Radio Frequency Power Amplifiers’ Modeling and Linearization

Fares, Marie-Claude January 2009 (has links)
Radio frequency (RF) communications are limited to a number of frequency bands scattered over the radio spectrum. Applications over such bands increasingly require more versatile, data extensive wireless communications that leads to the necessity of high bandwidth efficient interfaces, operating over wideband frequency ranges. Whether for a base station or mobile device, the regulations and adequate transmission of such schemes place stringent requirements on the design of transmitter front-ends. Increasingly strenuous and challenging hardware design criteria are to be met, especially so in the design of power amplifiers (PA), the bottle neck of the transmitter’s design tradeoff between linearity and power efficiency. The power amplifier exhibits a nonideal behavior, characterized by both nonlinearity and memory effects, heavily affecting that tradeoff, and therefore requiring an effective linearization technique, namely Digital Predistortion (DPD). The effectiveness of the DPD is highly dependent on the modeling scheme used to compensate for the PA’s nonideal behavior. In fact, its viability is determined by the scheme’s accuracy and implementation complexity. Generic behavioral models for nonlinear systems with memory have been used, considering the PA as a black box, and requiring RF designers to perform extensive testing to determine the minimal complexity structure that achieves satisfactory results. This thesis first proposes a direct systematic approach based on the parallel Hammerstein structure to determine the exact number of coefficients needed in a DPD. Then a physical explanation of memory effects is detailed, which leads to a close-form expression for the characteristic behavior of the PA entirely based on circuit properties. The physical expression is implemented and tested as a modeling scheme. Moreover, a link between this formulation and the proven behavioral models is explored, namely the Volterra series and Memory Polynomial. The formulation shows the correlation between parameters of generic behavioral modeling schemes when applied to RF PAs and demonstrates redundancy based on the physical existence or absence of modeling terms, detailed for the proven Memory polynomial modeling and linearization scheme.
475

Modelling Framework for Radio Frequency Spatial Measurement

Wiles, Andrew Donald January 2006 (has links)
The main crux of this thesis was to produce a model that was capable of simulating the theoretical performance of different configurations for a spatial measurement system using radio frequency technology. It has been important to study new modalities of spatial measurement since spatial measurement systems are an enabling technology that have allowed for the creation of better medical procedures and techniques, provided valuable data for motion capture in animation and biomechanics, and have improved the quality of manufacturing processes in many industries. However, there has been room for improvement in the functional design and accuracy of spatial measurement systems that will enhance current applications and further develop new applications in medicine, research and industry. <br /><br /> In this thesis, a modelling framework for the investigation of spatial measurement based on radio frequency signals was developed. The simulation framework was designed for the purpose of investigating different position determination algorithms and sensor geomatries. A finite element model using the FEMLAB partial differential equation modelling tool was created for a time-domain model of electromagnetic wave propagation in order to simulate the radio frequency signals travelling from a transmitting source antenna to a set of receiving antenna sensors. Electronic line signals were obtained using a simple receiving infinitesimal dipole model and input into a time difference of arrival localization algorithm. The finite element model results were validated against a set of analytical solutions for the free space case. The accuracy of the localization algorithm was measured against a set of possible applications for a potential radio frequency spatial measurement system design. <br /><br /> It was concluded that the simulation framework was successful should one significant deficiency be corrected in future research endeavours. A phase error was observed in the signals extracted at the receiving antenna locations. This phase error, which can be up to 40°, was attributed to the zeroth order finite elements implemented in the finite element model. This phase error can be corrected in the future if higher order vector elements are introduced into future versions of FEMLAB or via the development of custom finite element analysis software but were not implemented in this thesis due to time constraints. Other improvements were also suggested for future work.
476

Complexity Reduced Behavioral Models for Radio Frequency Power Amplifiers’ Modeling and Linearization

Fares, Marie-Claude January 2009 (has links)
Radio frequency (RF) communications are limited to a number of frequency bands scattered over the radio spectrum. Applications over such bands increasingly require more versatile, data extensive wireless communications that leads to the necessity of high bandwidth efficient interfaces, operating over wideband frequency ranges. Whether for a base station or mobile device, the regulations and adequate transmission of such schemes place stringent requirements on the design of transmitter front-ends. Increasingly strenuous and challenging hardware design criteria are to be met, especially so in the design of power amplifiers (PA), the bottle neck of the transmitter’s design tradeoff between linearity and power efficiency. The power amplifier exhibits a nonideal behavior, characterized by both nonlinearity and memory effects, heavily affecting that tradeoff, and therefore requiring an effective linearization technique, namely Digital Predistortion (DPD). The effectiveness of the DPD is highly dependent on the modeling scheme used to compensate for the PA’s nonideal behavior. In fact, its viability is determined by the scheme’s accuracy and implementation complexity. Generic behavioral models for nonlinear systems with memory have been used, considering the PA as a black box, and requiring RF designers to perform extensive testing to determine the minimal complexity structure that achieves satisfactory results. This thesis first proposes a direct systematic approach based on the parallel Hammerstein structure to determine the exact number of coefficients needed in a DPD. Then a physical explanation of memory effects is detailed, which leads to a close-form expression for the characteristic behavior of the PA entirely based on circuit properties. The physical expression is implemented and tested as a modeling scheme. Moreover, a link between this formulation and the proven behavioral models is explored, namely the Volterra series and Memory Polynomial. The formulation shows the correlation between parameters of generic behavioral modeling schemes when applied to RF PAs and demonstrates redundancy based on the physical existence or absence of modeling terms, detailed for the proven Memory polynomial modeling and linearization scheme.
477

Statistical design, analysis, and diagnosis of digital systems and embedded RF circuits

Matoglu, Erdem 11 1900 (has links)
No description available.
478

Multi-Target Tracking via Nonlinear Least Squares Using Doppler Measurements from a Passive Radar System

Joshi, Sujay S. 09 April 2007 (has links)
A passive radar systems opportunistic ability to exploit ambient radio signal reflections makes it ideal for covert target tracking. This strategy, referred to as passive covert radar (PCR) or passive coherent location (PCL), typically exploits FM radio or television signals from powerful local transmitters. In addition to covertness, the absence of a dedicated transmitter helps reduce costs and overall system complexity. While a variety of measurements can be used to estimate a targets position and velocity, such as time difference of arrival (TDOA) and direction of arrival (DOA), this thesis focuses on using only Doppler shift measurements to estimate a targets state. The work presented in this thesis examines the use of Doppler shift measurements from multiple receivers to solve the target tracking and association problem. A nonlinear least squares error (NLSE) estimation technique, called the Levenberg-Marquardt (L-M) algorithm, is used to determine a targets state (position, velocity) from these Doppler shift measurements. More than one target state can potentially produce identical Doppler shift profiles. In a single-receiver, single-target scenario, it is shown that three additional ghost targets caused by symmetry produce the same Doppler shift response. These ghosts may make state estimation impossible if receive antennas are not physically positioned to block out ghost targets. While the NLSE technique tends to give an accurate solution in one quadrant, three other solutions will symmetrically exist in each of the remaining three quadrants. The addition of either another receiver or another measurement (such as DOA) is needed to break this quadrant ambiguity. This thesis considers adding multiple receivers to accurately associate and track multiple targets. Two target association methods (sequential and simultaneous) are developed, and their computational requirements and accuracy are compared. A grid-aided L-M search technique is investigated in an attempt to provide a better initial target state guess to these association and tracking algorithms. The analysis and simulation results suggest it is feasible to perform multi-target association and tracking using Doppler shift as the sole measurement. Both of the proposed methods gave optimal target association and converged to reasonably accurate state estimates in most of the Monte Carlo runs.
479

Improved Performance of a Radio Frequency Identification Tag Antenna on a Metal Ground Plane

Prothro, Joel Thomas 18 May 2007 (has links)
Simulation and experiments quantify the effect of moving a horizontal dipole antenna close to a metal ground plane. Solutions to the radiation problems are offered.
480

Study of Complementary Electrochromic Devices with a Novel Gel Polymer Electrolyte

Lin, Shih-Yuan 10 August 2011 (has links)
In this study, WO3 and NiO thin films were deposited on the ITO/Glass substrates by radio frequency (RF) magnetron sputtering, respectively. The physical and electrochromic properties of thin films were investigated. On the other hand, the lithium perchlorate (LiClO4) powder was dispersed in propylene carbonate (PC) solvent to complete 1 M electrolyte. Then, as the 4.5 wt.% of ethyl cellulose and 8 wt.% ethylene carbonate (EC) were added to this electrolyte under stirring, a gel polymer electrolyte (GPE) was formed. Finally, the WO3 and NiO thin films obtained with the optimal deposition parameters were combined with the GPE to set up a complementary electrochromic device (CECD). The effects of the various coloring voltages on the electrochromic properties of CECD are investigated. The memory effect, energy-saving efficient, response time and switch lifetime of CECD are also estimated and discussed. Experimental results reveal that the amorphous thin films can be obtained with the RF power of 100 W and oxygen concentration of 60% at room temperature (RT). The thicknesses of WO3 and NiO films were approximately 530 nm and 180 nm, respectively. The stoichiometric of thin films were 2.99 for O/W ratio and 1.01 for O/Ni ratio. The GPE [(1 M LiClO4+PC)+ethyl cellulose(4.5 wt.%)+EC(8 wt.%)] exhibits a viscosity coefficient of 100 mPa∙s, a maximum ion conductivity (£m) of 7.17 mS/cm, a minimum activation energy (Ea) of 0.033 eV and a average visible transmittance of 82% at RT. The optimal electrochromic CECD (Glass/ITO/WO3/GPE/NiO/ITO/Glass) biased with a coloring/bleaching voltage of ¡Ó2.2 V revealed a transmittance variation (£GT%) of 54.53%, an optical density change (£GOD) of 0.790, an intercalation charge (Q) of 6.28 mC/cm2 and a coloration efficiency (£b) of 125.21 cm2/C at a wavelength (£f) of 550 nm. The chromaticity coordinates of CECD were x=0.289 and y=0.365 under the colored state. In addition, the energy-saving efficient of CECD was 15.19 W/V-m2 over the wavelength range between 380 nm and 780 nm. Also, it presented an open-circuit memory effect that the colored transmittance (£f at 550 nm) was 18.9% in 24 h. The total response time of the CECD was about 4 s for coloring and bleaching steps. After the repeated switch of 1,000 times, the £GT% of CECD was 43.57%. In this study, WO3 and NiO thin films with good adhesion, amorphous, and nearly stoichiometric were successfully deposited by RF sputter. Furthermore, high £m and high transmittance of GPE can be prepared easily and inexpensively. Our results demonstrated that the CECD exhibited the advantages of low applied voltage, high £b, fast response time and long-term memory characteristics.

Page generated in 0.0971 seconds