• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 601
  • 80
  • 60
  • 25
  • 24
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1030
  • 1030
  • 312
  • 276
  • 179
  • 155
  • 150
  • 142
  • 124
  • 120
  • 105
  • 101
  • 101
  • 100
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Self-assembled gold nanoparticles in patterned ZnO/Si heterojunction

Tsai, Wei-lung 24 July 2012 (has links)
The electro-optical properties of the ZnO/Si heterojunction embedded with self-assembled gold nanoparticles on patterned silicon substrate are investigated in this master thesis. High quality n-type ZnO film is deposited on patterned p-type silicon substrate by radio-frequency sputtering to form a ZnO/Si pn junction. The patterned silicon substrates are prepared by ICP-RIE using self-assembled nickel metal dot and silicon dioxide as etching mask. The optimum ICP process conditions of silicon nanopillars are CF4/Ar ~ 40/40 sccm and bias/RF power 400/400 W. Silicon nanopillars of diameter ~ 50 nm and height 100~400 nm are formed on the substrate surface. ZnO film is then deposited of a growth rate ~ 12 nm/min at the substrate temperature = 200oC. The plasmonic effects on the electro-optical properties, including photoluminescence (PL), reflection, and electrical characteristics, are studied by adding self-assembled gold nanoparticles within the ZnO film. The self-assembled gold nanoparticles are formed by thermal deposition and rapid thermal annealing at 700oC. The gold nanoparticles are observed by scanning electron microscopy (SEM) and particles of diameter about 100 nm. The PL intensity of ZnO is enhanced more than ten times at the peak wavelength = 380 nm by adding the gold nanoparticles and silicon nanopillars. Strong blue emission light could be saw with the naked eyes. For the electric characteristics, self-assembled gold nanoparticles in patterned ZnO/Si heterojunction show photoelectric conversion phenomenon because of high electromagnetic absorption and plasmonic effects.
482

Relationship between Frequency of RFID Tags and Its Ability to Penetrate Fresh Concrete

Sridharan, Rajasekaran 2010 May 1900 (has links)
The concrete maturity method can be utilized to determine in situ strength of concrete. It uses the temperature of concrete to determine a maturity index that can then be used to determine strength of concrete. However, monitoring the concrete temperature using thermocouples brings up a wiring issue, which is not advisable in an equipment and human intensive area like a construction site. One of the ways to get around this wiring issue is to use Radio Frequency Identification (RFID) technology, which is capable of transmitting information wirelessly. Previous research implemented using ultra high frequency RFID tags embedded in fresh concrete found that water could be the impediment for transmitting RFID signal from within concrete during early stages of curing. From literature it was found that lower the frequency, better the chances of the wave penetrating water. The objective of the research was to figure out whether the frequency of RFID tags has any relationship with the readability of RFID tags embedded in fresh concrete. For this investigation, low frequency, high frequency, and ultra high frequency RFID tags were tested within fresh concrete to see any difference between tags in terms of transmitting information. This experiment was carried out in a controlled space to reduce the number of variables affecting the experiment outcome. The low frequency, high frequency, and ultra high frequency RFID tags were placed within 2 in x 3 in x 2 in wooden formwork at a depth of 4 in, 8 in, and 12 in. Ready mix concrete was poured into the formwork and 3 concrete cubes were cast with the tags embedded within them. Readers that could be connected to a laptop were used to monitor and collect the time at which these RFID tags can be detected. The test showed that the RFID signals from the low frequency tags at all depths were detected as soon as concrete was poured. The Ultra High Frequency tags placed at the 4" level could be detected 15 minutes after concrete was poured. The UHF tags at the 8" level could be detected after 30 minutes. The UHF tags at the 12" level took on an average 2 hours to be detected from the vicinity of the formwork. The greater the depth at which the ultra high frequency tag was buried the longer it took for it to be detected. The high frequency tags could be detected only at the 4" level. The reason the performance of the HF card degraded in concrete could be because it uses an aluminum foil antenna which is more susceptible to the environment changing the relative permeability. A copper wire antenna could have fared better in this condition, increasing the chances of detecting the tag. Moreover a passive tag was used. The read range and chances of detection could have been increased had an active tag been used. The power of the reader that was used was also very less which might have contributed to the tag not being detected. Among the tags that were used in the experiment it was found that low frequency tags was the tag that could be detected the earliest after concrete was poured into the forms. However, the maximum read range of the tag observed in the experiment was 20" which is too small a distance to be used on an actual construction site.
483

Radio frequency circuit design and packaging for silicon-germanium hetrojunction bipolar technology.

Poh, Chung Hang 09 November 2009 (has links)
The objective of this thesis is to design RF circuits using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) for communication system. The packaging effect for the SiGe chip using liquid crystal polymer (LCP) is presented and methodology to derive the model for the package is discussed. Chapter 1, we discuss the overview and benefits of SiGe HBT technology in high frequency circuit design. Chapter 2 presents the methodology of the low noise amplifier (LNA) design and discusses the trade-off between the noise and gain matching. The technique for achieving simultaneous noise and gain matching for the LNA is also presented. Chapter 3 presents an L-band cascaded feedback SiGe low noise amplifier (LNA) design for use in Global Position System (GPS) receivers. Implemented in a 200 GHz SiGe BiCMOS technology, the LNA occupies 1 x 1 millimeter square (including the bondpads). The SiGe LNA exhibits a gain greater than 23 dB from 1.1 to 2.0 GHz, and a noise figure of 2.7 to 3.3 dB from 1.2 to 2.4 GHz. At 1.575 GHz, the 1-dB compression point (P1dB) is 1.73 dBm, with an input third-order intercept point (IIP3) of -3.98 dBm. Lastly, Chapter 4 covers the packaging techniques for the SiGe monolithic integrated circuit (MMIC). We present the modeling of a liquid crystal polymer (LCP) package for use with an X-band SiGe HBT Low Noise Amplifier (LNA). The package consists of a 2 mil LCP laminated over an embedded SiGe LNA, with vias in the LCP serving as interconnects to the LNA bondpads. An accurate model for the packaging interconnects has been developed and verified by comparing to measurement results, and can be used in chip/package co-design.
484

Understanding distortion in silicon-germanium transistors, and its application to RF circuits

Seth, Sachin 17 November 2009 (has links)
In an increasingly crowded frequency spectrum with strong interfering signals, the distortion performance, or the linearity, of RF circuits is key to their ability to reject strong intermodulation terms that can corrupt the weak but desired carrier signal. A standard figure-of-merit for small-signal linearity is the Input/Output Third Order Intercept Point (IIP3/OIP3), which represents the input/output power level at which the power of fundamental frequency (PFUND) become equal to that of the third-order intermodulation product (P3rd). Clearly, a higher IIP3 number yields improved linearity, and is highly desirable for many circuits. The thesis will focus on describing the issues that can stem in telecommunication systems from these non-linearities. These non-linearities can be modeled by using a rigorous mathematical expansion based on the Volterra Series. The thesis will "demystify" the Volterra series so that it could be readily understood by the circuit designer, without over burdening him with too much mathematics. Using this series, the distortion performance of an amplifier will be quantified based on IIP3 metrics as described above. Having identified sources of non-linearities, and quantifying the effect of each non-linearity on total IIP3 of an amplifier, the thesis will focus on mitigating these non-linearity sources to increase the overall IIP3 of an amplifier. The techniques discussed to do this are based on both novel device design as well as novel circuit techniques. The amplifiers under discussion will all be SiGe based, due to their exemplary RF performances (comparable to III-V devices) at the fraction of the cost.
485

Efficient bit encoding in backscatter wireless systems

Graf, Patrick Anthony 08 April 2010 (has links)
As the size and power consumption of microelectronic circuits continues to decrease, passively-powered sensors promise to come to the forefront of commercial electronics. One of the most promising technologies that could realize this goal is backscatter sensing. Backscatter sensors could harvest power from and modulate data onto an impinging carrier waveform. Currently radio frequency identification (RFID) technology passively powers itself and transmits statically stored data. However, this technology has two major weaknesses: lack of resiliency against narrowband interference and slow data rates. Both of these issues could be detrimental in sensing applications. This thesis will lay out a method for addressing both of these weaknesses through a unique application of spread spectrum encoding. Instead of spread spectrum being viewed as the multiplication of an already encoded data sequence with a periodic pseudorandom sequence, each sequence could be viewed in an aperiodic manner, where a single period of a pseudorandom sequence represents a data symbol. In this manner, backscatter sensors not only benefit from the increased resiliency that spread spectrum provides, but also can have higher data rates, since multiple bits can be encoded on a single symbol and multiple nodes can be read simultaneously, using spread spectrum multiple access techniques. In this thesis, 63-chip and 255-chip Kasami sequences, as well as 127-chip Gold sequences, will be analyzed for their use in various aperiodic direct sequence spread spectrum/multiple access system configurations (systems that have up to three nodes and use up to four different aperiodic sequences per node to represent different symbols). For each different configuration, near-"ideal" code configurations/rotations will be determined for use in the system.
486

A CMOS radio-frequency front-end for multi-standard wireless communications

Cha, Jeongwon 26 August 2010 (has links)
The explosive growth of wireless communication market has led the development of low-cost, highly-integrated wireless communication systems. Even though most blocks in the front-end have successfully been integrated by using the CMOS technology, it is still a formidable challenge to integrate the entire front-end. Thus, the objective of this research is to demonstrate the feasibility of the integrated front-end by using improved circuit techniques as well as the improved process technologies. This dissertation proposes an improved control scheme to enhance the high-power handling capability of an antenna switch. As a part of this research, an antenna switch controller for a GaAs antenna switch was first developed to enhance the performances of the GaAs antenna switch by using the boosted control voltage. To enhance the efficiency of the front-end, efficiency improvement techniques for the antenna switch controller has also been studied. With the suggested efficiency improvement techniques, a fully-integrated antenna switch was implemented using the SOI technology, and exceeding performances over many commercial products for watt-level high-power applications have been successfully demonstrated. As an effort to improve the efficiency of a power amplifier, a linear envelope detector was also implemented, and the results show that the envelope detector is suitable for dynamic biasing of the power amplifier. The research presented in this dissertation, thus, provides a low-cost and high-performance solution for highly-integrated RF front-end used in various wireless communication systems.
487

A fully-integrated all-digital outphasing transmitter for wireless communications

Kim, Kwan-Woo 12 November 2009 (has links)
The objective of the proposed research is to present a new all-digital outphasing transmitter IC, a comprehensive explanation of its operation, and its performance characterization. The all-digital transmitter chip leverages flexible digital phase modulators (DPMs) to adaptively compensate for amplifier mismatches. As the DPM uses a digital input to directly modulate the RF phase of each path, the phase control becomes very simple and accurate for power amplifier (PA) gain/phase mismatch compensation. Furthermore, this digital phase modulation scheme also facilitates minimizing the distortion of an RF combiner. It is newly proposed that two distinct digital predistortion algorithms are required for perfect compensation for both PAs and a combiner. All phase calibration values can be adaptively calculated as a function of outphase angle and saved in digital look-up tables to predistort the phase inputs of two DPMs. Various types of PAs and combiners are investigated to further enhance the performance of the outphasing transmitter. These features are implemented in a chip fabricated in a 0.18-¥ìm CMOS process and evaluated with IEEE 802.16e baseband symbols.
488

Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

Deyle, Travis 14 November 2011 (has links)
Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.
489

Radio Frequency Thermal Treatment of Liver Tumours : -Influence of Blood Perfusion and Large Vessels

Andersson, Per January 2008 (has links)
<p>Radio frequency ablation (RFA) is a commonly used minimally invasive method of treating liver cancer tumours which utilises RF current for heating tumour tissue up to a lethal temperature. RF current is generated by a power generator and applied to the tumour by an electrode which is inserted into the tumour either during percutaneous or open surgery. </p><p>RFA is a method that has great advantages compared to traditional surgical resection of tumours due to minimal invasiveness, it can be used for a greater number of patients and enables repeated treatments. Even though there are many advantages coupled to RFA there are still some problems and difficulties associated with the method. One of these problems is the cooling effect from large vessel blood flow within the liver, the so called heat sink effect.</p><p>The aim of this master thesis work has been to develop a theoretical finite element model of RFA within Comsol Multiphysics software. This theoretical model has been used to simulate blood perfusion effects on resulting ablation volume. The effects from different large vessel blood flow parameters has been investigated, these parameters are: blood flow velocity, blood vessel diameter and distance between blood vessel and RF electrode. A factorial design has been utilised to setup parameter levels for the different simulations. A linear- and a second degree regression model has been calculated based on simulation results. The parameter with largest impact on simulative ablation volume and the interaction effects between the parameters were determined from the regression model coefficients. In addition to this has two simulations been performed, modelling perfused- and unperfused liver tissue, in order to investigate the effects resulting from microvascular perfusion.</p><p>The result shows that the parameter with largest impact on simulative ablation volume are the distance, it was also shown that there are a small interactional effects between diameter and distance, where a small distance increases the effect from a varying diameter. Modelled microvascular perfusion was shown to give a decrease in simulative ablation volume. A shortage of this master thesis work is the lack of experimental verification of the developed model. </p>
490

無限射頻辨識系統(RFID)導入的成功關鍵因素探討 / Key Success Factors Analysis in the Implementation of RFID Technology

劉俊良, Liu, Eric Unknown Date (has links)
現在越來越多的廠商和美國國防部都需要較好的無限射頻辨識系統(RFID)系統,所以它越來越受到注目,本論文即在探討無限射頻辨識系統(RFID)導入成功的關鍵因素。 / With the driving force from Wal-Mart, the world’s largest retailer and the US Department of Defense, suppliers are required to integrate Radio Frequency Identification (RFID) in their case and pallet shipments to distribution centers in their supply chain. In comparison with traditional bar code labels and magnetic strips for supply chain management, RFID technology offers better visibility and information integration in the supply chain management. In this paper, a variety of Automatic identification technologies will be compared to demonstrate the advantages of RFID solutions. The introduction of RFID technology will be made as well to detail the components in the RFID systems and the factors taken into account in the RFID selection and design phases. In the technology implementation, the diffusion model is adopted to explain the evolution of new technology implementation process. The strategic model for the adoption of RFID technology in business process and management is presented as a guideline for companies who are considering adopting the RFID solutions. The impact on business management and the practice guideline to the RIFD implementation are illustrated. The factor analysis in the driving forces and resistance to the RFID adoption are examined to identify the attributes of its successful implementation and the variables of its adoption. According to the factor analysis, the driving forces are summarized into four major ones, including technology innovation, government and standard organization influence, organizational readiness and inter-organization demands. Two cases of RFID applications are presented to illustrate the factors taken into account in the RFID implementation. These two cases include the health care application and agricultural product process application. Companies gain the benefits of the improvement in the production efficiency and quality control over the business process and management. Information flow and capturing are becoming visible and automatic with the implementation of RFID technology.

Page generated in 0.1315 seconds