• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 18
  • 13
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 195
  • 126
  • 85
  • 81
  • 80
  • 21
  • 18
  • 16
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Estudo dos efeitos toxicológicos em ratos Wistar alimentados com ração contendo Urânio. / Study of toxicological effects in Wistar rats fed with uranium.

Rodrigues, Gabriela 29 April 2010 (has links)
O urânio (U) é um elemento tóxico radioativo encontrado na natureza, normalmente presente na água e nos alimentos e acumula-se preferencialmente em ossos. Nestes, a medula óssea constitui o alvo com o maior risco radiobiológico. Foram utilizados 60 ratos wistar recém desmamados, com vinte e dois dias de vida. Destes, trinta e cinco foram tratados com ração suplementada de 50ppm (parte por milhão) de Nitrato de Uranila e vinte e cinco foram mantidos como controle. Os animais tratados foram separados em seis grupos com cinco animais cada e os grupos controle com três animais. Foi feita a eutanásia dos 5 animais de cada grupo alimentado com urânio e 3 animais de cada grupo de controle com intervalo de tempo de 3 e 4 dias para avaliar alterações histopatológicas, hematológicas, na densidade mineral óssea e medir o teor de urânio acumulado em ossos, em função do tempo, utilizando a técnica de registro de traços de fissão SSNTD (Solid State Nuclear Track Detector). Nas avaliações histopatológicas foi observada congestão, fibrose e necrose hepática, degeneração vacuolar e desarranjo cordonal dos hepatócitos. Essas alterações iniciaram-se em animais alimentados durante três dias com ração contendo U e se intensificaram nos animais tratados durante onze dias, sugerindo que tenha ocorrido combinação de efeitos toxicológicos e radiobiológicos. Foi observada degeneração vacuolar, cilindros hialinos, fibrose e necrose nos rins dos animais alimentados com ração suplementada de U, a partir de quatorze dias de alimentação, decorrentes da nefrotoxicidade do Nitrato de Uranila. Foi observado que não ocorre alteração da densidade mineral óssea no curto prazo; porém, os animais tratados durante 21 e 28 dias, ou seja, expostos ao U por período mais longo, tiveram a densidade mineral óssea diminuída. Ocorreu substancial acúmulo de urânio nos ossos, onde foi observado 1,139 ± 0,057 ppm em ossos e 0,705 +- 0,092 ppm em dentes. Os animais dos grupos controle apresentaram teor de urânio praticamente constante no decorrer do estudo. Não foi observada alteração do teor de urânio em ração comercial. / Uranium (U) is a radioactive toxic element found in the environment, naturally present in water and food, with preference for accumulation in bone. In the latter, marrow is the target with the highest radiobiological risk. It was carried out a study with sixty Wistar rats, twenty two days old, starting at the post weaning period. From this total, thirty five animals fed with chow containing Uranyl Nitrate at a concentration of 50 ppm (parts per million) were selected as the treated group, while the remaining twenty five were the control group. Treated animals were divided into six groups with five animals each plus six control groups with three animals each. Five animals of the treated group and three of the control group were sacrificed at intervals of four days to observe histopathologic, hematologic, and bone mineral density (BMD) alterations, as well as to measure the uranium content in bone as function of time, using the Solid State Nuclear Track Detector technique. It was observed congestion, vacuolar degeneration, hepatocytes misalignment, fibrosis and necrosis in liver. These alterations were initiated in treated animals fed for three days with diets containing U and intensified in the animals treated for eleven days, suggesting the occurrence of an intertwining between radiobiological and toxicological effects. It was also observed vacuolar degeneration, hyaline cylinders, fibrosis and necrosis in the kidneys of the treated animals, all initiated after fourteen days of treatment, and these effects were attributed to the nephrotoxic character of the Uranyl Nitrate. It was found out that the BMD was not altered in the short range term of treatment, that is, treatments of twenty-one and twenty-eight days, but appreciably reduced in the long range term. There was substantial accumulation of uranium in bones and teeth, where it was measured concentrations of 1.139 ± 0.057 ppm and 0.705 ± 0.092 ppm, respectively. The uranium concentration in the bones of animals of the control group were low and approximately constant.
142

Estudos microdosimétricos usando um sistema de irradiação de nêutrons rápidos filtrados de reator de pesquisa para aplicação de radiobiologia / Microdosimetric studies using a filtered fast neutron irradiation system of research reactor to application in radiation biology

Rodrigues, Pedro Pereira 14 June 2007 (has links)
Neste trabalho, medidas microdosimétricas foram realizadas usando um contador proporcional equivalente à tecido - TEPC. com uma cavidade esférica de diâmetro de 1.27 cm. O TEPC foi preenchido com gás propane puro, C3HS, à pressão de 5,6 kPa (42 Torr), que é equivalente a 1,3 μm em diâmetro de unidade de densidade do tecido. O instrumento de medida microdosimétrica foi irradiado com radiação de nêutrons rápidos do reator de pequisa do Nuclear Science Center da Texas A&M University, em College Station,-Texas. Os feixes de nêutrons rápidos foram emitidos com três diferentes valores de potência. 0,5, 1,0, e 2,0 kVV, durante 1 hora para alto ganho e o mesmo tempo para baixo ganho, totalizando 2 horas para cada potência, com 0,0083 Gy/min de taxa de dose. O neutron foi filtrado usando o sistema de irradiação de néutrons rápidos fortemente nitrados (FNIS). do Nuclear Science Center, para obter uma redução da contaminação da radiação de neutron por radiação gama e assim obter espectros microdosimetricos de neutrons como, distribuição de freqüência de energia lineal e distribuição de dose de energia lineal, com boa precisão, e outras grandezas como, freqüência média de energia lineal, dose média de energia lineal, dose absorvida, dose equivalente e fator de qualidade médio de neutron rápido. Os resultados obtidos foram satisfatórios, com os espectros microdosimetricos de nêutrons mostrando uma contaminação de radiação gama abaixo de 5 %, especialmente para distribuição de dose de energia lineal. Os resultados obtidos neste trabalho foram comparados com outros da literatura científica, que usaram outros procedimentos para a redução da contaminação do neutron por radiação gama. estando em concordância com eles. / In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC was filled with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C3H8 at 5.6 kPa (42 Torr) pressure, which is equi\\alent to 1.3μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A&M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during Ih for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation s\\stem (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray.
143

Estudos microdosimétricos usando um sistema de irradiação de nêutrons rápidos filtrados de reator de pesquisa para aplicação de radiobiologia / Microdosimetric studies using a filtered fast neutron irradiation system of research reactor to application in radiation biology

Pedro Pereira Rodrigues 14 June 2007 (has links)
Neste trabalho, medidas microdosimétricas foram realizadas usando um contador proporcional equivalente à tecido - TEPC. com uma cavidade esférica de diâmetro de 1.27 cm. O TEPC foi preenchido com gás propane puro, C3HS, à pressão de 5,6 kPa (42 Torr), que é equivalente a 1,3 μm em diâmetro de unidade de densidade do tecido. O instrumento de medida microdosimétrica foi irradiado com radiação de nêutrons rápidos do reator de pequisa do Nuclear Science Center da Texas A&M University, em College Station,-Texas. Os feixes de nêutrons rápidos foram emitidos com três diferentes valores de potência. 0,5, 1,0, e 2,0 kVV, durante 1 hora para alto ganho e o mesmo tempo para baixo ganho, totalizando 2 horas para cada potência, com 0,0083 Gy/min de taxa de dose. O neutron foi filtrado usando o sistema de irradiação de néutrons rápidos fortemente nitrados (FNIS). do Nuclear Science Center, para obter uma redução da contaminação da radiação de neutron por radiação gama e assim obter espectros microdosimetricos de neutrons como, distribuição de freqüência de energia lineal e distribuição de dose de energia lineal, com boa precisão, e outras grandezas como, freqüência média de energia lineal, dose média de energia lineal, dose absorvida, dose equivalente e fator de qualidade médio de neutron rápido. Os resultados obtidos foram satisfatórios, com os espectros microdosimetricos de nêutrons mostrando uma contaminação de radiação gama abaixo de 5 %, especialmente para distribuição de dose de energia lineal. Os resultados obtidos neste trabalho foram comparados com outros da literatura científica, que usaram outros procedimentos para a redução da contaminação do neutron por radiação gama. estando em concordância com eles. / In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC was filled with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C3H8 at 5.6 kPa (42 Torr) pressure, which is equi\\alent to 1.3μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A&M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during Ih for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation s\\stem (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray.
144

Utilisation des nanoparticules pour ameliorer les performances de la hadrontherapie / Improvement of hadrontherapy by addition of nanoparticles

Porcel, Erika 10 November 2011 (has links)
Le cancer est l'une des principales causes de décès dans le monde, trouver des traitements plus efficaces est donc d’un intérêt majeur. La radiothérapie conventionnelle utilisant des rayons X peut détruire des tumeurs, mais provoque des effets secondaires nocifs pour les tissus sains environnants. L'hadronthérapie est un outil utilisant des ions pour irradier la tumeur et qui s’avère très efficace pour le traitement du cancer. Les propriétés physiques particulières des ions permettent de mieux cibler et donc d’irradier un volume bien défini comme la tumeur. Afin de renforcer le ciblage et l'efficacité des traitements, une amplification de la mort cellulaire spécifiquement dans la tumeur est nécessaire. Pour améliorer les traitements, nous proposons une stratégie innovante qui combine des nano-médicaments et l'irradiation par des ions rapides.Nous avons déjà montré que les sels de platine renforcent fortement l’endommagement à l'ADN induit par les différentes irradiations (telles que les rayons X et les ions rapides) et accélèrent la mort des cellules. Cet effet est attribué à l'ionisation des électrons du platine en couche interne par les électrons produits le long de la trace, suivi par la désexcitation Auger du métal. Ces électrons Auger peuvent induire des dommages de façon directe ou par effet indirect via les radicaux produits dans l’eau. Le défi est de déposer ces sensibilisateurs dans la tumeur. Les développements récents en matière de nanotechnologie apportent de nouvelles perspectives par l’utilisation de nanoparticules, qui peuvent être fonctionnalisées afin de cibler des tissus spécifiques.Notre étude montre que l'irradiation avec des ions carbone provenant du HIMAC (centre médical Japonais, leader en hadronthérapie) en présence de ces nanoparticules induit une augmentation significative des dommages à l'ADN. En particulier, notre travail permet de comprendre que cette combinaison induit des dommages plus complexes que lorsque les sels de platine sont utilisés. Cet effet est expliqué par l'auto-amplification des cascades d'électrons Auger à l'intérieur des nanoparticules. Des radicaux de l'eau sont produits à l'échelle de l’ADN et conduisent à son endommagement. Cette amplification des dommages a été observée dans les cellules vivantes en présence de nanoparticules bien qu’elles se trouvent exclusivement dans le cytoplasme. L’amplification des dommages décrite pour l’ADN peut avoir lieu dans n'importe quelle molécule contenue dans le cytoplasme ce qui peut mener à la destruction d’organites.Ce travail à l'interface de la physique, de la chimie et de la biologie présente un fort intérêt pour l'élaboration de protocoles médicaux tels que l'hadronthérapie et la nanomédecine, ceci afin d’améliorer l'efficacité et la précision des traitements. / Cancer is one of the major causes of death in the world, finding more effective treatments is therefore of major interest. Conventional radiotherapy using X-rays can destroy tumors but causes harmful side effects to surrounding healthy tissues. The hadrontherapy is a powerful tool for cancer treatment which uses ions to irradiate the tumor. The particular physical properties of ions allow better targeting, and therefore, an irradiation of the well-defined volume of the tumor. In order to further enhance the targeting and the efficiency of the treatments, an amplification of the cell death rate specifically in the tumor is of strong interest. To improve treatments, we propose an innovative strategy that combines nano-drugs and irradiation by fast ions.We already showed that platinum salts enhance strongly DNA damage induced by different radiations (such as X-rays and fast ions) and accelerate cell death. This effect is attributed to the ionization of inner shell electrons of platinum by the electrons produced along the track, followed by Auger de-excitation of the metal. These Auger electrons can induce damage by direct or indirect effect (water radicals mediated). The challenge is to locate these sensitizers in the tumor. Recent developments in nanotechnology pointed out new perspectives by using nanoparticles, which can be functionalized to target specific tissues.Our study shows that irradiation with carbon ions from HIMAC (Japanese medical center, leader in hadrontherapy) in presence of these nanoparticles induces a significant increase of DNA damage. In particular, our work helps to understand that this combination induces more complex lethal damage compared to platinum salts. This effect is explained by the auto-amplification of Auger electron cascades inside the nanoparticles. Numerous water radicals are produced at DNA scale leading to its damage. Same observation of damage amplification has been made in living cells loaded with nanoparticles while they stay exclusively in the cytoplasm. The amplification of damage described on DNA can occur in a cytoplasm included molecule and may induce organelle destruction.This work at the interface of physics, chemistry and biology finds strong interest for developing medical protocols such as hadrontherapy and nanomedicine improving effectiveness and accuracy of treatment.
145

The use of autoradiography in the indentification of selected bacteria in the European corn borer

Warn, Beverly Jean 03 June 2011 (has links)
AbstractScientists trying to find biological controls for insect pests are hamperedd by the absence of rapid methods for screening organisms such as bacteria for potential pathogenicity. An organism must grow in the gut of the insect to be pathogenic. By using radioisotopes as tracers a quick method of screening potential insect pathogens may be developed.Escherichia coli and Sarcina flava were used as known nonpathogens and Bacillus thuringiensis was used as a known pathogen. In this work an attempt was made to verify the presence of bacteria in specific tissues of the insects.European corn borer larvae were fed 1-C14 palmitic acid and labeled E. coli, S. flava and B. thuringiensis. Parasaggital sections were made of the corn borers and radioautograms were made of the sections. Grain counts over a 2,000 u2 area were made of various tissues and compared.There was a statistically significant difference in the distribution of label in corn borer larvae fed labeled bacteria as compared to corn borers fed 1-C14 palmitic acid. Label tended to incorporate into fatty tissue in the corn borers.If this technique can be used to positively demonstrate the establishment of selected bacteria in the gut of the insect then it may be possible to use such methods to screen for potential insect pathogens and give insight into the mechanisms which result in the death of insects.Ball State UniversityMuncie, IN 47306
146

Nickel-63 microirradiators and applications

Steeb, Jennifer L. 30 June 2010 (has links)
In this thesis, manufacturing of microirradiators, electrodeposition of radioactive elements such as Ni-63, and applications of these radioactive sources are discussed. Ni-63 has a half life of 100 years and a low energy beta electron of 67 keV, ideal for low dose low linear energy transfer (LET) research. The main focus of the research is on the novel Ni-63 microirradiator. It contains a small amount of total activity of radiation but a large flux, allowing the user to safely handle the microirradiator without extensive shielding. This thesis is divided into nine chapters. Properties of microirradiators and various competing radioactive sources are compared in the introduction (chapter 1). Detailed description of manufacturing Ni-63 microirradiator using the microelectrode as the starting point is outlined in chapter 2. The microelectrode is a 25 µm in diameter Pt disk sealed in a pulled 1 mm diameter borosilicate capillary tube, as a protruding wire or recessed disk microelectrode. The electrochemically active surface area of each is verified by cyclic voltammetry. Electrodeposition of nickel with a detailed description of formulation of the electrochemical bath in a cold "non-radioactive setting" was optimized by using parameters as defined by pourbaix diagrams, radioactive electroplating of Ni-63, and incorporation of safety regulations into electrodeposition. Calibration and characterization of the Ni-63 microirradiators as protruding wire and recessed disk microirradiators is presented in chapter 3. In chapters 4 through 6, applications of the Ni-63 microirradiators and wire sources are presented. Chapter 4 provides a radiobiological application of the recessed disk microirradiator and a modified flush microirradiator with osteosarcoma cancer cells. Cells were irradiated with 2000 to 1 Bq, and real time observations of DNA double strand breaks were observed. A novel benchtop detection system for the microirradiators is presented in chapter 5. Ni-63 is most commonly measured by liquid scintillation counters, which are expensive and not easily accessible within a benchtop setting. Results show liquid scintillation measurements overestimates the amount of radiation coming from the recessed disk. A novel 10 µCi Ni-63 electrochemically deposited wire acting as an ambient chemical ionization source for pharmaceutical tablets in mass spectrometry is in chapter 6. Typically, larger radioactive sources (15 mCi) of Ni-63 have been used in an ambient ionization scenario. Additionally, this is the first application of using Ni-63 to ionize in atmosphere pharmaceutical tablets, leading to a possible field portable device. In the last chapters, chapters 7 through 8, previous microirradiator experiments and future work are summarized. Chapter 7 illustrates the prototype of the electrochemically deposited microirradiator, the Te-125 microirradiator. In conjunction with Oak Ridge National Laboratory, Te-125m is a low dose x-ray emitting element determined to be the best first prototype of an electrochemically deposited microirradiator. Manufacturing, characterization, and experiments that were not successful leading to the development of the Ni-63 microirradiator are discussed. In chapter 8, future work is entailed in continuing on with this thesis project. The work presented in the thesis is concluded in chapter 9.
147

A Monte Carlo-based Model Of Gold Nanoparticle Radiosensitization

Lechtman, Eli 10 January 2014 (has links)
The goal of radiotherapy is to operate within the therapeutic window - delivering doses of ionizing radiation to achieve locoregional tumour control, while minimizing normal tissue toxicity. A greater therapeutic ratio can be achieved by utilizing radiosensitizing agents designed to enhance the effects of radiation at the tumour. Gold nanoparticles (AuNP) represent a novel radiosensitizer with unique and attractive properties. AuNPs enhance local photon interactions, thereby converting photons into localized damaging electrons. Experimental reports of AuNP radiosensitization reveal this enhancement effect to be highly sensitive to irradiation source energy, cell line, and AuNP size, concentration and intracellular localization. This thesis explored the physics and some of the underlying mechanisms behind AuNP radiosensitization. A Monte Carlo simulation approach was developed to investigate the enhanced photoelectric absorption within AuNPs, and to characterize the escaping energy and range of the photoelectric products. Simulations revealed a 10^3 fold increase in the rate of photoelectric absorption using low-energy brachytherapy sources compared to megavolt sources. For low-energy sources, AuNPs released electrons with ranges of only a few microns in the surrounding tissue. For higher energy sources, longer ranged photoelectric products travelled orders of magnitude farther. A novel radiobiological model called the AuNP radiosensitization predictive (ARP) model was developed based on the unique nanoscale energy deposition pattern around AuNPs. The ARP model incorporated detailed Monte Carlo simulations with experimentally determined parameters to predict AuNP radiosensitization. This model compared well to in vitro experiments involving two cancer cell lines (PC-3 and SK-BR-3), two AuNP sizes (5 and 30 nm) and two source energies (100 and 300 kVp). The ARP model was then used to explore the effects of AuNP intracellular localization using 1.9 and 100 nm AuNPs, and 100 and 300 kVp source energies. The impact of AuNP localization was most significant for low-energy sources. At equal mass concentrations, AuNP size did not impact radiosensitization unless the AuNPs were localized in the nucleus. This novel predictive model of AuNP radiosensitization could help define the optimal use of AuNPs in potential clinical strategies by determining therapeutic AuNP concentrations, and recommending when active approaches to cellular accumulation are most beneficial.
148

A Monte Carlo-based Model Of Gold Nanoparticle Radiosensitization

Lechtman, Eli 10 January 2014 (has links)
The goal of radiotherapy is to operate within the therapeutic window - delivering doses of ionizing radiation to achieve locoregional tumour control, while minimizing normal tissue toxicity. A greater therapeutic ratio can be achieved by utilizing radiosensitizing agents designed to enhance the effects of radiation at the tumour. Gold nanoparticles (AuNP) represent a novel radiosensitizer with unique and attractive properties. AuNPs enhance local photon interactions, thereby converting photons into localized damaging electrons. Experimental reports of AuNP radiosensitization reveal this enhancement effect to be highly sensitive to irradiation source energy, cell line, and AuNP size, concentration and intracellular localization. This thesis explored the physics and some of the underlying mechanisms behind AuNP radiosensitization. A Monte Carlo simulation approach was developed to investigate the enhanced photoelectric absorption within AuNPs, and to characterize the escaping energy and range of the photoelectric products. Simulations revealed a 10^3 fold increase in the rate of photoelectric absorption using low-energy brachytherapy sources compared to megavolt sources. For low-energy sources, AuNPs released electrons with ranges of only a few microns in the surrounding tissue. For higher energy sources, longer ranged photoelectric products travelled orders of magnitude farther. A novel radiobiological model called the AuNP radiosensitization predictive (ARP) model was developed based on the unique nanoscale energy deposition pattern around AuNPs. The ARP model incorporated detailed Monte Carlo simulations with experimentally determined parameters to predict AuNP radiosensitization. This model compared well to in vitro experiments involving two cancer cell lines (PC-3 and SK-BR-3), two AuNP sizes (5 and 30 nm) and two source energies (100 and 300 kVp). The ARP model was then used to explore the effects of AuNP intracellular localization using 1.9 and 100 nm AuNPs, and 100 and 300 kVp source energies. The impact of AuNP localization was most significant for low-energy sources. At equal mass concentrations, AuNP size did not impact radiosensitization unless the AuNPs were localized in the nucleus. This novel predictive model of AuNP radiosensitization could help define the optimal use of AuNPs in potential clinical strategies by determining therapeutic AuNP concentrations, and recommending when active approaches to cellular accumulation are most beneficial.
149

Late radiation effects in radiotherapy : changes in the biomechanical properties of normal skin, and surgically produced lesions after X irradiation measured in vivo and in vitro

Baker, Mark Ralph January 1993 (has links)
No description available.
150

Development of a Raman microscope for applications in radiobiology

Matthews, Quinn 23 July 2008 (has links)
Raman microscopy (RM) is a vibrational spectroscopic technique capable of obtaining sensitive measurements of molecular composition, structure, and dynamics from a very small sample volume (~1 µm). In this work, a RM system was developed for future applications in cellular radiobiology, the study of the effects of ionizing radiation on cells and tissues, with particular emphasis on the capability to investigate the internal molecular composition of single cells (10-50 µm in diameter). The performance of the RM system was evaluated by imaging 5 µm diameter polystyrene microbeads dispersed on a silicon substrate. This analysis has shown that RM of single cells is optimized for this system when using a 100x microscope objective and a 50 µm confocal collection aperture. Quantitative measurements of the spatial, confocal, and spectral resolution of the RM system have been obtained using metal nanostructures deposited on a flat silicon substrate. Furthermore, a spectral investigation of several substrate materials was successful in identifying low-fluorescence quartz as a suitable substrate for RM analysis of single cells. Protocols have been developed for culturing and preparing two human tumor cell lines, A549 (lung) and DU145 (prostate), for RM analysis, and a spectroscopic study of these two cell lines was performed. Spectra obtained from within cell nuclei yielded detectable Raman signatures from all four types of biomolecules found in a human cell: proteins, lipids, carbohydrates, and nucleic acids. Furthermore, Raman profiles and 2D maps of protein and DNA distributions within single cells have been obtained with micron-scale spatial resolution. It was also found that the intensity of Raman scattering is highly dependent on the concentration of dense nuclear material at the point of Raman collection. RM shows promise for studying the interactions of ionizing radiation with single cells, and this work has been successful in providing a foundation for the development of future radiobiological RM experiments.

Page generated in 0.0648 seconds