111 |
Functional microdomains in the specialized membranes of skeletal myofibresKaakinen, M. (Mika) 27 September 2011 (has links)
Abstract
The function of skeletal muscle is to generate force and produce movement. These tasks are carried out by long multinucleated cells, the skeletal myofibres. The membrane system and the cytoskeleton of these cells are uniquely organized to respond rapidly to neuronal stimuli and to achieve efficient contraction. In the present study the organization and distribution of selected protein/lipid based microdomains that reside in the plasma membrane and sarcoplasmic reticulum of isolated rat skeletal myofibres, were investigated.
Aquaporin 4 (AQP4) water channels are arranged as higher order oligomers of several sizes in the sarcolemma and in the T tubules. These oligomers, however, were absent from many specialized micro- and- macrodomains. The distribution of AQP4 coincided with that of a highly organized protein assembly, the dystrophin glycoprotein complex (DGC), in the sarcolemma. A chimaeric venus-AQP4 was equally mobile in the T tubules and sarcolemma, but the anchoring mechanisms of the protein appeared to be different.
In contrast to AQP4, the proteins resident in cholesterol and sphingolipid-based microdomains, known as rafts, also occupied DGC deficient areas, which surround the T tubule openings. Indeed, flotillin-1 rafts were located in the neck portions of the T tubules. The rafts defined by the influenza haemagglutinin (HA) also resided in DGC deficient areas, but at the borders of the DGC area. Importantly, of the raft proteins, only the localization of caveolin 3 (CAV3) was dependent on the cholesterol enriched lipid environment, as evidenced by cholesterol depletion experiments and localization studies on a non-raft associated variant of HA.
The organization and distribution of membrane associated rough ER (RER) proteins were also analysed. Biochemical detergent extraction analyses and immunofluorescence staining indicated that the ER proteins were assembled as microdomains within the sarcoplasmic reticulum (SR). The microdomains were distributed throughout the SR network and they were capable of protein translocation.
Taken together, skeletal myofibres comprise visually distinct microdomains both in the plasma membrane and in the SR. In the plasma membrane, different types of microdomains are not homogenously distributed and function in diverse locations. This may have important physiological implications concerning, among other things, local regulation of ion concentrations and cell signalling cascades. Different constraints ranging from protein-protein interactions to the surrounding lipid environment are important for dictating the observed distribution patterns. / Tiivistelmä
Luustolihaksen toimintojen perustana ovat supistumiskykyiset lihassolut, joiden kalvorakenne on järjestynyt erityisellä tavalla ohjaamaan supistusta. Tässä tutkimuksessa analysoitiin proteiini- ja lipidiperustaisten mikroalueiden järjestäytymistä ja tähän vaikuttavia tekijöitä luustolihassolun solukalvolla sekä lihassolun sisäisessä kalvojärjestelmässä, sarkoplasmisessa verkossa (SR).
Ensin analysoitiin vesikanavatyyppiä 4 (AQP4), joka oligomerisoituessaan muodostaa erikokoisia mikroalueita. Havaittiin, että AQP4-mikroalueita esiintyy kaikkialla solukalvolla lukuun ottamatta eräitä erilaistuneita mikro- ja makroalueita. AQP4-oligomeerien jakauma solukalvon lateraalisessa osassa, sarkolemmalla, noudatti dystrofiini-glykoproteiinikompleksin jakaumaa. Fluoresoivan venus-AQP4-proteiinin avulla osoitettiin, että proteiinin liikkuvuus oli samanlainen solun sisään ulottuvissa poikkiputkistoissa ja sarkolemmalla, mutta liikkuvuutta rajoittavat tekijät olivat erilaisia näissä solukalvon osissa.
Toiseksi analysoitiin kolesteroli- ja sfingolipidipitoisia mikroalueita, kalvolauttoja. Flotilliini-1- ja influenssaviruksen hemagglutiniini (HA) -proteiinia sisältäviä lauttoja esiintyi vain poikkiputkien suuaukkojen alueella, mutta lauttojen jakauma oli erilainen. Lauttojen lipidiympäristöllä ei ollut vaikutusta proteiinien sijaintiin. Tämä osoitettiin kolesterolin poistokokeilla sekä kokeilla, joissa käytettiin mutatoitua HA-proteiinia, joka ei hakeudu kolesteroliympäristöön. Kaveoliini-3-proteiinin sijainti poikkeaa edellä mainituista, ja kolesterolin poisto vaikutti merkittävästi sijainnin määräytymiseen.
Kolmanneksi analysoitiin, miten karkean endoplasmakalvoston proteiinit ovat järjestäytyneet SR:ssä. Havaittiin, että endoplasmiset kalvoproteiinit eivät ole homogeenisesti levittäytyneet SR-kalvostoon vaan muodostavat pieniä mikroalueita. Detergenttiuuttoanalyysit osoittivat lisäksi, että näissä mikroalueissa on erilainen lipidikoostumus kuin SR:ssä yleensä. Huomattavaa oli myös, että mikroalueet olivat toiminnallisia kaikkialla SR-kalvostossa.
Tulosten perusteella luustolihassolujen kalvojärjestelmä sisältää mikroalueita, joiden jakautuminen vaikuttaa hyvin organisoituneelta. Erityisesti solukalvon mikroalueet esiintyvät tietyillä spesifeillä alueilla, joissa niiden voidaan olettaa toimivan mm. erilaisissa solusignalointitapahtumissa ja paikallisessa ionipitoisuuksien säätelyssä. Eräissä tapauksissa lipidiympäristöllä on merkitystä mikroalueiden sijainnin määräytymisessä, mutta proteiinien sitoutuminen solukalvo- tai solukalvon alaisiin rakenteisiin saattaa myös olla määräävä tekijä.
|
112 |
The influence of membrane bound proteins on phase separation and coarsening in cell membranesWitkowski, Thomas, Backofen, Rainer, Voigt, Axel January 2012 (has links)
A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be explained using thermodynamic models for phase separation and coarsening. In live cells such domains are not observed and various models are proposed to describe why the systems do not coarsen. We review these attempts critically and show within a phase field approach that membrane bound proteins have the potential to explain the different behaviour observed in vitro and in vivo. Large scale simulations are performed to compute scaling laws and size distribution functions under the influence of membrane bound proteins and to observe a significant slow down of the domain coarsening at longer times and a breakdown of the self-similarity of the size-distribution function. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
113 |
Organization and formation of the apical membrane of epithelial cellsMeder, Doris 18 June 2004 (has links)
Compartmentalization of cell membranes, in particular of the apical membrane of columnar epithelia, is the topic of this thesis. The first part characterizes the apical membrane and its specialized organization and morphology, whereas the second part focuses on the formation of this unique plasma membrane domain during epithelial polarization. The apical membrane of columnar epithelia is enriched in glycosphingolipids, a class of lipids that are known to interact with cholesterol to form liquid ordered domains, also termed "rafts", in cell membranes. Imaging the apical surface of untreated and raft lipid depleted MDCK cells with atomic force microscopy revealed that raft lipids are involved in the formation and/or maintenance of microvilli, actin based protrusions of the apical plasma membrane, indicating a regulatory link between membrane domains and the cytoskeleton. Furthermore, antibody patching and photobleaching experiments performed during the work of this thesis suggest that the organization into raft and non-raft domains is very different in the apical membrane of MDCK cells compared to the plasma membrane of a fibroblast. In fact, the data support the hypothesis that the apical membrane could be a percolating raft membrane in which rafts constitute the major phase and non-raft domains exist as isolated entities. The second part of this thesis analyses the segregation of apical and basolateral membrane domains during epithelial polarization. This segregation can either be achieved by generating scaffolded domains prior to junction formation or by polarized secretory and endocytic membrane traffic after the establishment of cell junctions. While most apical and basolateral marker proteins in MDCK cells follow the latter mechanism, this thesis reports that the apical marker gp135 is confined to the dorsal face already in single attached cells. The unknown antigen was purified and identified as podocalyxin. Analysis of a series of domain mutants revealed that the C-terminal PDZ-binding motif of podocalyxin is mainly responsible for its special localization, which it shares with the PDZ protein NHERF-2. Knocking down podocalyxin by RNA interference resulted in retardation of cell growth and epithelial polarization. Taken together, the data suggest that podocalyxin and NHERF-2 could be part of an early apical polarity scaffolding system based on PDZ-binding and PDZ-containing proteins.
|
114 |
The Role of Lipid Domains and Sterol Chemistry in Nanoparticle-Cell Membrane InteractionsFuhrer, Andrew B. January 2020 (has links)
No description available.
|
115 |
Regulating Lipid Organization and Investigating Membrane Protein Properties in Physisorbed Polymer-tethered MembranesSiegel, Amanda P. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell membranes have remarkable properties both at the microscopic level and the molecular level. The current research describes the use of physisorbed polymer-grafted lipids in model membranes to investigate some of these properties on both of these length scales. On the microscopic scale, plasma membranes can be thought of as heterogenous thin films. Cell membranes adhered to elastic substrates are capable of sensing substrate/film mismatches and modulating their membrane stiffness to more closely match the substrate. Membrane/substrate mismatch can be modeled by constructing lipopolymer-enriched lipid monolayers with different bending stiffnesses and physisorbing them to rigid substrates which causes buckling. This report describes the use of atomic force microscopy and epimicroscopy to characterize these buckled structures and to illustrate the use of the buckled structures as diffusion barriers in lipid bilayers. In addition, a series of monolayers with varying bending stiffnesses and thicknesses are constructed on rigid substrates to analyze changes in buckling patterns and relate the experimental results to thin film buckling theory.
On the molecular scale, plasma membranes can also be thought of as heterogeneous mixtures of lipids where the specific lipid environment is a crucial factor affecting membrane protein function. Unfortunately, heterogeneities involving cholesterol, labeled lipid rafts, are small and transient in live cells. To address this difficulty, the present work describes a model platform based on polymer-supported lipid bilayers containing stable raft-mimicking domains into which transmembrane proteins are incorporated (αvβ3, and α5β1integrins). This flexible platform enables the use of confocal fluorescence fluctuation spectroscopy to quantitatively probe the effect of cholesterol concentrations and the binding of native ligands (vitronectin and fibronectin for αvβ3, and α5β1) on protein oligomerization state and on domain-specific protein sequestration. In particular, the report shows significant ligand-induced integrin sequestration with a low level of dimerization. Cholesterol concentration increases rate of dimerization, but only moderately. Ligand addition does not affect rate of dimerization in either system. The combined results strongly suggest that ligands induce changes to integrin conformation and/or dynamics without inducing changes in integrin oligomerization state, and in fact these ligand-induce conformational changes impact protein-lipid interactions.
|
116 |
The Role of Membrane Lipid Microdomains (Rafts) in FcγRIIA Effector FunctionsVieth, Joshua A. 24 May 2010 (has links)
No description available.
|
117 |
Le vieillissement membranaire cérébral : conséquences fonctionnelles et protection par les acides gras polyinsaturés oméga-3 alimentaires / Membrane brain aging : functional outcomes and protection by dietary omega-3 polyunsatured fatty acidsColin, Julie 19 June 2015 (has links)
Un des phénomènes sociétaux marquants de ces dernières années est le vieillissement de la population et en conséquence, une hausse considérable du nombre de personnes âgées. Dans ce contexte, la recrudescence des pathologies chroniques liées au vieillissement, dont la maladie d’Alzheimer, est devenue un enjeu majeur de santé publique. L’impact de nombreux facteurs environnementaux modulables, l’aspect chronique et évolutif des mécanismes pathogènes mis en jeu, doivent inciter à développer des interventions préventives permettant de minimiser les risques de développer ces maladies liées au vieillissement. Ce travail nous a permis de mettre en évidence l’importance d’utiliser des modèles d’étude et des modes d’expérimentation adaptés au vieillissement pour espérer en ralentir ou retarder les processus délétères. Nos résultats ont aussi permis d’identifier les membranes comme des éléments essentiels au bon fonctionnement cérébral. L’altération de la composition et de l’architecture des membranes neuronales chez la souris âgée perturbe leurs fonctionnalités et diminue les capacités de réponse neuroprotectrices recherchées notamment lors des thérapies anti-Alzheimer. Nous avons aussi observé des modifications membranaires comparables chez les souris rendues dyslipidémiques par un régime alimentaire excessif en lipides saturés auquel nous avons pu clairement attribuer un rôle pro-vieillissement. Nous avons finalement démontré le potentiel préventif d’une supplémentation alimentaire en acide docosahexaénoïque, l’acide gras polyinsaturé à longue chaîne majoritaire dans le cerveau, et pu conclure en sa capacité de restaurer une réponse neuroprotectrice altérée chez la souris âgée / One of the marked societal phenomena in recent decades is the aging of populations due to continually increasing lifespans and as a result, a considerable surge in the number and proportion of elderly, particularly in Western countries. In this demographic context, the rise of chronic diseases related to aging, including Alzheimer’s disease and other types of dementia, has become a major public health issue. The impact of modifiable environmental factors, evolution of the pathogenic mechanisms involved, and the lack of curative treatments illustrates the need for the development of interventions to prevent or delay the onset of these aging-related diseases. The present work demonstrates the importance of using age-adapted study models and experimental methods with the goal towards slowing or delaying age-related deleterious processes. Secondly, our results have identified membranes as an essential part for normal brain function. The composition and architectural changes in the neuronal membranes of elderly mice disrupt their functionality and reduce neuroprotective responsiveness such as those sought by anti-Alzheimer’s therapies. We also observed similar pro-aging-type changes in brain membranes of dyslipidemic mice fed a high-fat diet. Thus, disturbances of lipid homeostasis are correlated with an increased risk of developing aging-related cardiovascular and metabolic as well as neurodegenerative diseases. We finally demonstrated the preventive potential of dietary supplementation with docosahexaenoic acid, the most abundant long-chain polyunsaturated fatty acid in the brain, and observed its ability to restore a neuroprotective response that was impaired in older mice
|
118 |
The effect of α-tocopherol on the membrane dipole potentialLe Nen Davey, Sterenn January 2011 (has links)
α-Tocopherol has a well known antioxidant action but is also considered likely to exert significant non-antioxidant effects in cell membranes. Due to its lipophilic nature α-tocopherol inserts into biological membranes where it influences the organisation of the component lipids and may therefore influence biophysical parameters including the membrane dipole potential. The dipole potential has been demonstrated to modulate the function of several membrane associated proteins and perturbation of this physical parameter by α-tocopherol may prove to be a significant non-antioxidant mechanism underlying several of its cellular effects. This study investigates the influence of α-tocopherol, and the non-antioxidant structural analogue α-tocopherol succinate, on the membrane dipole potential employing fluorescence spectroscopy techniques with the dipole potential sensitive probe Di-8-ANEPPS. Similar techniques are utilised with the surface potential sensitive probe FPE to investigate the interaction of the charged α-tocopherol succinate molecule with membranes. α-Tocopherol and α-tocopherol succinate are shown to decrease the dipole potential of egg-phosphatidylcholine vesicles and Jurkat T-lymphocyte cell membranes. This effect is placed in the context of the significant influence of membrane cholesterol oxidation on the dipole potential. 7-ketocholesterol, an oxidised form of cholesterol, significantly influences several cellular processes and is thought to mediate these effects, in part, through its physical effects on the cell membrane. These include altering the composition, and therefore biophysical properties, of rafts; structures which are considered to support the function of a host of membrane proteins. This study attempts to correlate the effect of 7-ketocholesterol on the dipole potential of microdomains with the influence of the oxysterol on the function of two microdomains associated receptors: P-glycoprotein and the insulin receptor, assessed by determining the extent of ligand binding using flow fluorocytometry. α-Tocopherol has been suggested to inhibit the raft-mediated effects of 7-ketocholesterol and the influence of this molecule on the effect of 7-ketocholesterol on the dipole potential are investigated as a potential mechanism for this inhibition. It is hypothesized that α-tocopherols may protect against the deleterious effects of cholesterol oxidation in cell membranes by excluding 7-ketocholesterol from specific microdomains, of which rafts are a subset, acting to preserve their dipole potential and maintain the function of the proteins they support. However, where significant cholesterol oxidation has previously occured the concurrent changes in the microdomain landscape of the membrane is suggested to prevent α-tocopherol succinate from eliciting this protective effect.
|
119 |
Role of the regulation of cell lipid composition and membrane structure in the antitumor effect of 2-hydroxyoleic acidLaura Martin, Maria 26 October 2011 (has links)
El ácido 2-hidroxioleico (2OHOA) es un fármaco antitumoral diseñado para regular la estructura y composición de los lípidos de membrana y la función de importantes proteínas de membrana. El objetivo principal de este trabajo fue estudiar cómo el 2OHOA modula la composición lipídica y la estructura de membrana en las células tumorales. Se observó que el 2OHOA indujo profundas alteraciones en el contenido de fosfolípidos, aumentando el contenido de esfingomielina y disminuyendo el contenido de fosfatidiletanolamina y fosfatidilcolina. Este efecto fue específico contra las células cancerosas, ya que el tratamiento no afectó la composición lipídica de las células no tumorales MRC-5 de fibroblastos humanos. El aumento de SM se debió a una activación rápida y específica de las SM sintasas. Como consecuencia de la activación sostenida de la SMS, todo el metabolismo de los esfingolípidos se vio afectado. Finalmente, se evaluó el impacto de todos estos cambios sobre las propiedades biofísicas de membrana mediante espectroscopia de fluorescencia / 2-Hydroxyoleic acid (2OHOA) is a potent antitumor drug that was designed to regulate membrane lipid composition and structure and the function of important membrane proteins.
The main goal of this work was to study how 2OHOA modulates the membrane lipid composition and structure of tumor cells.
2OHOA induced dramatic alterations in phospholipid content, increasing sphingomyelin mass, and decreasing phosphatidyl-ethanolamine and phosphatidylcholine.
This effect was specific against cancer cells as it did not affect non-tumor MRC-5 cells. The increased SM mass was due to a rapid and highly specific activation of SM synthases. As a consequence of the sustained activation of SMS, the whole sphingolipid metabolism was affected. Then, the impact of all these changes on membrane biophysical properties was evaluated by fluorescence spectroscopy
|
120 |
Characterization of Molecular Glycerophospholipids by Quadrupole Time-of-Flight Mass SpectrometryEkroos, Kim 10 November 2003 (has links) (PDF)
The physical properties of glycerophospholipids (GPLs) are not only determined by the head group (HG), but also by their fatty acid (FA) chains, which affect their distribution and function within membranes in the cell. Understanding the microheterogenity of lipid membranes on a molecular level requires qualitative and quantitative characterization of individual lipids and identification of their FA moieties. The aim of my study was to introduce the new technology of multiple precursor ion scanning (MPIS) on a QSTAR Pulsar time-of-flight mass spectrometer (QqTOF) to analyze lipids. Detailed information on fatty acid composition of individual GPL molecules could be obtained in parallel with conventional profiling of lipid classes, and this could be done by direct analysis of total lipid extracts. This method was termed Fatty Acid Scanning (FAS) and Head Group Scanning HGS, respectively. In this way the molecular GPL composition of total lipid extracts could be charted in a single analysis accurately and rapidly at a low picomole concentration level. Furthermore, combining FAS and HGS together with ion trap MS3 analysis allowed complete charting of the molecular composition of PCs, including quantification of their positional isomers, thus providing a detailed and comprehensive characterization of molecular composition of the pool of PCs. Development of the Lipid Profiler software allowed full automation and rapid processing of complex data, including identification and quantification of molecular GPLs. This approach was evaluated by preliminary applications. First, the molecular composition of PCs of total lipid extracts of MDCK cells and of human red blood cells (RBC) could accurately be charted. Significant presence of positional isomers was observed increasing the total number of individual PC species close to one hundred. Secondly, the molecular PC and SM species distribution in detergent resistant membranes (DRMs) prepared by Triton X-100 DRMs were analyzed and were found to be enriched in distinct GPLs. The distribution in PCs and SMs of Triton X-100 DRMs of RBC were compared with those of the DRMs of MDCK cells. Finally, combining the use of a 96 well plate and a robotic system demonstrated that these analyses can be automated and analyzed with high throughput. This system we termed Shotgun Lipidomics. Taken together, this mass spectrometric methodology provides rapid and detailed insight into the distribution of the molecular GPLs of membranes and membrane sub-fractions.
|
Page generated in 0.0375 seconds