Spelling suggestions: "subject:"ranking""
101 |
Impulse Turbine Efficiency Calculation Methods with Organic Rankine CycleDahlqvist, Johan January 2012 (has links)
A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set in an organic Rankine cycle with the working fluid being R245fa. Various methods of loss calculation were explored in the search for a method sufficiently accurate to make valid assumptions regarding the turbine performance, while simple enough to be time efficient for use in industrial research and development. The calculations were primarily made in an isentropic manner, only taking into account losses due to the residual velocity present in the exit flow. Later, an incidence loss was incorporated in the isentropic calculations, resulting in additional losses at off-design conditions. Leaving the isentropic calculations, the work by Tournier, “Axial flow, multi-stage turbine and compressor models” was used. The work presents a method of calculating turbine losses separated into four components: profile, trailing edge, tip clearance and secondary losses. The losses applicable to the case were implemented into the model. Since the flow conditions of the present turbine are extreme, the results were not expected to coincide with the results of Tournier. In order to remedy this problem, the results were compared to results obtained through computational fluid dynamics (CFD) of the turbine. The equations purposed by Tournier were correlated in order to better match the present case. Despite that the equations by Tournier were correlated in order to adjust to the current conditions, the results of the losses calculated through the equations did not obtain results comparable to the ones of the available CFD simulations. More research within the subject is necessary, preferably using other software tools.
|
102 |
Impact of Jet Grouting on the Lateral Strength of Soil Surrounding Driven Pile FoundationsAdsero, Matthew E. 24 April 2008 (has links) (PDF)
Jet grouting was used to strengthen the soft soil surrounding the piles and the pile cap of two full-scale driven pile foundations. Soilcrete columns, created by jet grouting, were placed underneath the pile cap and surrounding the piles of the first foundation. Two rows of soilcrete columns were placed around the perimeter of one-side of the second. All of the jet grouting took place after construction of the pile caps. Laboratory testing of the soilcrete slurry showed the columns as having a design unconfined compressive strength of 550-650 psi, compared with the native soil strength of only 6-8 psi (850-1150 psf). Lateral loading of the pile foundation was then performed on these foundations. The results of this test were compared with a similar test performed on the same foundations under native soil conditions. The total lateral capacity of the pile foundation treated underneath the pile cap was increased by 500 kips, which equals an increase of 175%. The total lateral capacity of the pile foundation treated adjacent to the pile cap was 150%. Results of testing suggest that each of the jet-grout treated zones displaced as a rigid block. A majority of the increased lateral resistance came from the passive soil resistance acting on the face of the blocks and the adhesive soil resistance acting on the sides and bottom of the block as it displaced through the native soil. The remaining soil resistance, not accounted for by the passive and adhesive soil resistance, can potentially be attributed to increased soil pile interaction, which is predicted from the decrease in pile head rotation during loading following soil treatment.
|
103 |
Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van NiekerkVan Niekerk, Steven Cronier January 2014 (has links)
HOLCIM has various cement production plants across India. These plants struggle to
produce the projected amount of cement due to electricity shortages. Although coal is
abundant in India, the production thereof is in short supply.
It is proposed that a thorium HTR (100 MWt) combined with a PCU (Rankine cycle) be
constructed to supply a cement production plant with the required energy. The Portland
cement production process is investigated and it is found that process heat integration is not
feasible.
The problem is that for the feasibility of this IPP to be assessed, a Rankine cycle needs to be
adapted and optimised to suit the limitations and requirements of a 100 MWt thorium HTR.
Advantages of the small thorium HTR (100 MWt) include: on-site construction; a naturally
safe design and low energy production costs. The reactor delivers high temperature helium
(750°C) at a mass flow of 38.55 kg/s. Helium re-en ters the reactor core at 250°C.
Since the location of the cement production plant is unknown, both wet and dry cooling tower
options are investigated. An overall average ambient temperature of India is used as input
for the cooling tower calculations.
EES software is used to construct a simulation model with the capability of optimising the
Rankine cycle for maximum efficiency while accommodating various out of the norm input
parameters. Various limitations are enforced by the simulation model.
Various cycle configurations are optimised (EES) and weighed against each other. The
accuracy of the EES simulation model is verified using FlowNex while the optimised cycle
results are verified using Excel’s X-Steam macro.
It is recommended that a wet cooling tower is implemented if possible. The 85% effective
heat exchanger delivers the techno-economically optimum Rankine cycle configuration. For
this combination of cooling tower and heat exchanger, it is recommended that the cycle
configuration consists of one de-aerator and two closed feed heaters (one specified).
After the Rankine cycle (PCU) has been designed and optimised, it is evident that the small
thorium HTR (100 MWt) can supply the HOLCIM plant with the required energy. The optimum cycle configuration, as recommended, operates with a cycle efficiency of 42.4%
while producing 39.867 MWe. A minimum of 10 MWe can be sold to the Indian distribution
network at all times, thus generating revenue. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
|
104 |
Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van RooyVan Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of
electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical
energy from a conventional linear Fresnel CSP plant without a storage application, costs the
utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same
amount of energy by means of a highly efficient supercritical coal-fired power station, taking
carbon tax into consideration.
This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive
capital investment required per kW installed to construct such a plant along with the relatively
low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the
LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a
large-scale supercritical coal-fired power station, will be higher than that of a conventional
supercritical coal-fired power station, but much less than that of a conventional CSP plant. The
main aim of this study is to calculate and then compare the LCOE of a conventional supercritical
coal-fired power station with that of such a station integrated with a linear Fresnel CST field.
When the thermal energy generated in the receiver of a CST plant is converted into electrical
energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power
station, the total capital cost of the solar side of the integrated system will be reduced
significantly, compared with the two stations operating independently of one another for
common steam turbines, electrical generators and transformers, and transmission lines will be
utilised for the integrated plants.
The results obtained from the thermodynamic models indicate that if an additional heat
exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation
scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered,
one can expect to produce approximately 4,6 GWh more electricity to the national grid annually
than with a normal coal-fired station. This increase in net electricity output is mainly due to the
compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is
also found that the total annual thermal energy input required from burning pulverised coal is
reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the
coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total
thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into
electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT
less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce
approximately R8,188m in additional revenue annually from the trade of renewable energy
certificates, while the reduced coal consumption will result in an annual fuel saving of about
R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced
by R1,856m, and by supplying additional energy to the national grid, an additional income of
approximately R3,037m will be due to the power station. The annual operating and
maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the
region of R9,71m.
The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be
0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a
normal supercritical coal-fired power station.
If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an
LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate
electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale
components of a supercritical coal-fired power station, rather than to generate electricity from a
conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
|
105 |
Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van NiekerkVan Niekerk, Steven Cronier January 2014 (has links)
HOLCIM has various cement production plants across India. These plants struggle to
produce the projected amount of cement due to electricity shortages. Although coal is
abundant in India, the production thereof is in short supply.
It is proposed that a thorium HTR (100 MWt) combined with a PCU (Rankine cycle) be
constructed to supply a cement production plant with the required energy. The Portland
cement production process is investigated and it is found that process heat integration is not
feasible.
The problem is that for the feasibility of this IPP to be assessed, a Rankine cycle needs to be
adapted and optimised to suit the limitations and requirements of a 100 MWt thorium HTR.
Advantages of the small thorium HTR (100 MWt) include: on-site construction; a naturally
safe design and low energy production costs. The reactor delivers high temperature helium
(750°C) at a mass flow of 38.55 kg/s. Helium re-en ters the reactor core at 250°C.
Since the location of the cement production plant is unknown, both wet and dry cooling tower
options are investigated. An overall average ambient temperature of India is used as input
for the cooling tower calculations.
EES software is used to construct a simulation model with the capability of optimising the
Rankine cycle for maximum efficiency while accommodating various out of the norm input
parameters. Various limitations are enforced by the simulation model.
Various cycle configurations are optimised (EES) and weighed against each other. The
accuracy of the EES simulation model is verified using FlowNex while the optimised cycle
results are verified using Excel’s X-Steam macro.
It is recommended that a wet cooling tower is implemented if possible. The 85% effective
heat exchanger delivers the techno-economically optimum Rankine cycle configuration. For
this combination of cooling tower and heat exchanger, it is recommended that the cycle
configuration consists of one de-aerator and two closed feed heaters (one specified).
After the Rankine cycle (PCU) has been designed and optimised, it is evident that the small
thorium HTR (100 MWt) can supply the HOLCIM plant with the required energy. The optimum cycle configuration, as recommended, operates with a cycle efficiency of 42.4%
while producing 39.867 MWe. A minimum of 10 MWe can be sold to the Indian distribution
network at all times, thus generating revenue. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
|
106 |
Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van RooyVan Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of
electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical
energy from a conventional linear Fresnel CSP plant without a storage application, costs the
utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same
amount of energy by means of a highly efficient supercritical coal-fired power station, taking
carbon tax into consideration.
This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive
capital investment required per kW installed to construct such a plant along with the relatively
low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the
LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a
large-scale supercritical coal-fired power station, will be higher than that of a conventional
supercritical coal-fired power station, but much less than that of a conventional CSP plant. The
main aim of this study is to calculate and then compare the LCOE of a conventional supercritical
coal-fired power station with that of such a station integrated with a linear Fresnel CST field.
When the thermal energy generated in the receiver of a CST plant is converted into electrical
energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power
station, the total capital cost of the solar side of the integrated system will be reduced
significantly, compared with the two stations operating independently of one another for
common steam turbines, electrical generators and transformers, and transmission lines will be
utilised for the integrated plants.
The results obtained from the thermodynamic models indicate that if an additional heat
exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation
scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered,
one can expect to produce approximately 4,6 GWh more electricity to the national grid annually
than with a normal coal-fired station. This increase in net electricity output is mainly due to the
compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is
also found that the total annual thermal energy input required from burning pulverised coal is
reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the
coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total
thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into
electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT
less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce
approximately R8,188m in additional revenue annually from the trade of renewable energy
certificates, while the reduced coal consumption will result in an annual fuel saving of about
R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced
by R1,856m, and by supplying additional energy to the national grid, an additional income of
approximately R3,037m will be due to the power station. The annual operating and
maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the
region of R9,71m.
The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be
0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a
normal supercritical coal-fired power station.
If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an
LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate
electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale
components of a supercritical coal-fired power station, rather than to generate electricity from a
conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
|
107 |
Simulação numérica de tornados usando o método dos elementos finitosAguirre, Miguel Angel January 2017 (has links)
O presente trabalho tem como objetivo estudar escoamentos de tornados e sua ação sobre corpos imersos empregando ferramentas numéricas da Engenharia do Vento Computacional (EVC). Os tornados constituem-se atualmente em uma das causas de desastres naturais no Brasil, especialmente nas regiões sul e sudeste do país, como também em alguns países vizinhos. Os efeitos gerados são geralmente localizados e de curta duração, podendo ser devastadores dependendo da escala do tornado. Tais características dificultam a realização de estudos detalhados a partir de eventos reais, o que levou ao desenvolvimento de modelos experimentais e numéricos. A abordagem numérica é utilizada neste trabalho para a simulação de tornados, a qual se baseia nas equações de Navier-Stokes e na equação de conservação de massa, considerando a hipótese de pseudo-compressibilidade e condições isotérmicas. Para escoamentos com turbulência utiliza-se a Simulação Direta de Grandes Escalas com o modelo clássico de Smagorinsky para as escalas inferiores à resolução da malha (Large Eddy Simulation ou LES em inglês). A discretização das equações fundamentais do escoamento se realiza com um esquema explícito de dois passos de Taylor-Galerkin, onde o Método dos Elementos Finitos é empregado na discretização espacial utilizando-se o elemento hexaédrico trilinear isoparamétrico com um ponto de integração e controle de modos espúrios Na presença de corpos imersos que se movem para simular os deslocamentos dos tornados, o escoamento é descrito cinematicamente através de uma formulação Arbitrária Lagrangeana-Euleriana (ALE) que inclui um esquema de movimento de malha. Tornados são reproduzidos através da simulação numérica de dispositivos experimentais e do Modelo de Vórtice Combinado de Rankine (RCVM). Exemplos clássicos da Dinâmica dos Fluidos Computacional são apresentados inicialmente para a verificação das ferramentas numéricas implementadas. Finalmente, problemas envolvendo tornados móveis e estacionários são analisados, incluindo sua ação sobre corpos imersos. Nos modelos baseados em experimentos, a variação da relação de redemoinho determinou os diferentes padrões de escoamento observados no laboratório. Nos exemplos de modelo de vórtice, quando o tornado impactou o corpo imerso gerou picos de forças em todas as direções e, após a passar pelo mesmo, produziu uma alteração significativa na estrutura do vórtice. / Analyses of tornado flows and its action on immersed bodies using numerical tools of Computational Wind Engineering (CWE) are the main aims of the present work. Tornadoes are currently one of the causes of natural disasters in Brazil, occurring more frequently in the southern and southeastern regions of the country, as well as in some neighboring countries. Effects are usually localized, presenting a short time interval, which can be devastating depending on the scale of the tornado. These characteristics difficult to carry out detailed studies based on real events, leading to the development of experimental and numerical models. The numerical approach is used in this work for the simulation of tornadoes, which is based on the Navier-Stokes equations and the mass conservation equation, considering the hypothesis of pseudo-compressibility and isothermal conditions. For turbulent flows, Large Eddy Simulation (LES) is used with the classical Smagorinsky model for sub-grid scales Discretization is performed the explicit two-step Taylor-Galerkin scheme, where the Finite Element Method is used in spatial discretization using isoparametric trilinear hexahedral elements with one-point quadrature and hourglass control. In the presence of immersed bodies that are moving in order to simulate translating tornadoes, the flow is kinematically described through a Lagrangian-Eulerian Arbitrary (ALE) formulation, which includes a mesh motion scheme. Tornadoes are reproduced using numerical simulation of experimental devices and the Rankine Combined Vortex Model (RCVM). Classical examples of Computational Fluid Dynamics are presented initially for the verification of the numerical tools implemented here. Finally, problems involving moving and stationary tornadoes are analyzed, including their actions on immersed bodies. For models based on experiments, the variation of the swirl ratio determined the different flow patterns observed in the laboratory. In the vortex model examples, when the tornado impacted on the immersed body, peaks of forces were generated in all directions and, after passing over it, a significant change in the structure of the vortex was produced.
|
108 |
Performance of a thermally activated cooling system and design of a microchannel heat recovery unitSeward, Ryan 09 March 2012 (has links)
The performance of a combined vapor-compression cycle/ORC is evaluated using waste-heat from a diesel generator. A flat plate microchannel heat exchanger is employed to provide energy exchange between the diesel exhaust stream and an oil loop, which provides energy to a boiler. This study finds an increased diesel duty corresponds with an increased cooling capacity, for a maximum of 5 kW of cooling (with 13.5 kWe diesel load). System COP is reduced with a higher input power due to limitations in the cooling cycle. A number of solutions are identified to increase the COP and cooling capacity. A new microchannel heat exchanger to recovery heat is designed to increase performance compared to the previous version. / Graduation date: 2012
|
109 |
First and second law analysis of Organic Rankine CycleSomayaji, Chandramohan, 1980- January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
|
110 |
Simplified Methodology for Designing Parabolic Trough Solar Power PlantsVasquez Padilla, Ricardo 01 January 2011 (has links)
The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the commercial power industry. Compared to conventional power plants, parabolic trough solar power plants produce significantly lower levels of carbon dioxide, although additional research is required to bring the cost of concentrator solar plants to a competitive level. The cost reduction is focused on three areas: thermodynamic efficiency improvements by research and development, scaling up of the unit size, and mass production of the equipment. The optimum design, performance simulation and cost analysis of the parabolic trough solar plants are essential for the successful implementation of this technology. A detailed solar power plant simulation and analysis of its components is needed for the design of parabolic trough solar systems which is the subject of this research.
Preliminary analysis was carried out by complex models of the solar field components. These components were then integrated into the system whose performance is simulated to emulate real operating conditions. Sensitivity analysis was conducted to get the optimum conditions and minimum levelized cost of electricity (LCOE). A simplified methodology was then developed based on correlations obtained from the detailed component simulations.
A comprehensive numerical simulation of a parabolic trough solar power plant was developed, focusing primarily on obtaining a preliminary optimum design through the simplified methodology developed in this research. The proposed methodology is used to obtain optimum parameters and conditions such as: solar field size, operating conditions, parasitic losses, initial investment and LCOE. The methodology is also used to evaluate different scenarios and conditions of operation.
The new methodology was implemented for a 50 MWe parabolic trough solar power plant for two cities: Tampa and Daggett. The results obtained for the proposed methodology were compared to another physical model (System Advisor Model, SAM) and a good agreement was achieved, thus showing that this methodology is suitable for any location.
|
Page generated in 0.0472 seconds