• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 8
  • 6
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 45
  • 45
  • 34
  • 29
  • 24
  • 23
  • 21
  • 20
  • 19
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation on solar powered organic Rankine cycle with energy storage, economic and environmental benefits at different climate zones in various buildings types in the United States of America

Hemmati, Hadis 25 November 2020 (has links)
This study investigates the potential of installing an integrated solar powered Organic Rankine Cycle (ORC) with electric energy storage (EES) to provide clean energy to commercial buildings in different climate zones in the US. Reducing the primary energy consumption (PEC), lowering the carbon dioxide emissions (CDE) and increasing the operational cost savings are primary objectives. Firstly, a large office building for eight US climates is studied. The EES is sized to store all the electricity generated by the system. Secondly, the system is studied for sixteen different commercial buildings, in the best climate zone, by considering two operational strategies. Finally, the influence of variable expander efficiency on the system performance is investigated. Results indicate that Phoenix is the best location in the US, among the evaluated locations, to install the ORC-EES. The model for the full-service restaurant shows higher savings and more electricity supply percentage than the other buildings. The model under the variable expander efficiency lowers the yearly PEC by 1.6% and CDE and operational cost savings both by 11%.
32

A Design and Optimization Methodology for Multi-Variable Systems

Lott, Eric M. January 2015 (has links)
No description available.
33

Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles

Royo Pascual, Lucía 29 June 2017 (has links)
Regulations for ICE-based transportation in the EU seek carbon dioxide emissions lower than 95 g CO2/km by 2020. In order to fulfill these limits, improvements in vehicle fuel consumption have to be achieved. One of the main losses of ICEs happens in the exhaust line. Internal combustion engines transform chemical energy into mechanical energy through combustion; however, only about 15-32% of this energy is effectively used to produce work, while most of the fuel energy is wasted through exhaust gases and coolant. Therefore, these sources can be exploited to improve the overall efficiency of the engine. Between these sources, exhaust gases show the largest potential of Waste Heat Recovery (WHR) due to its high level of exergy. Regarding WHR technologies, Rankine cycles are considered as the most promising candidates for improving Internal Combustion Engines. However, the implementation of this technology in modern passenger cars requires additional features to achieve a compact integration and controllability in the engine. While industrial applications typically operates in steady state operating points, there is a huge challenge taking into account its impact in the engine during typical daily driving profiles. This thesis contributes to the knowledge and characterization of an Organic Rankine Cycle coupled with an Internal Combustion Engine using ethanol as working fluid and a swash-plate expander as expansion machine. The main objective of this research work is to obtain and quantify the potential of Organic Rankine Cycles for the use of residual energy in automotive engines. To do this, an experimental ORC test bench was designed and built at CMT (Polytechnic University of Valencia), which can be coupled to different types of automotive combustion engines. Using these results, an estimation of the main variables of the cycle was obtained both in stationary and transient operating points. A potential of increasing ICE mechanical efficiency up to 3.7% could be reached at points of high load installing an ORC in a conventional turbocharged gasoline engine. Regarding transient conditions, a slightly simple and robust control based on adaptive PIDs, allows the control of the ORC in realistic driving profiles. High loads and hot conditions should be the starting ideal conditions to test and validate the control of the ORC in order to achieve high exhaust temperatures that justify the feasibility of the system. In order to deepen in the viability and characteristics of this particular application, some theoretical studies were done. A 1D model was developed using LMS Imagine.Lab Amesim platform. A potential improvement of 2.5% in fuel conversion efficiency was obtained at the high operating points as a direct consequence of the 23.5 g/kWh reduction in bsfc. To conclude, a thermo-economic study was developed taking into account the main elements of the installation costs and a minimum Specific Investment Cost value of 2030 €/kW was obtained. Moreover, an exergetic study showed that a total amount of 3.75 kW, 36.5% of exergy destruction rate, could be lowered in the forthcoming years, taking account the maximum efficiencies considering technical restrictions of the cycle components. / Las normativas anticontaminantes para el transporte propulsado por motores de combustión interna alternativos en la Unión Europea muestran límites de emisión menores a 95 g CO2/km para el año 2020. Con el fin de cumplir estos límites, deberán ser realizadas mejoras en el consumo de combustible en los vehículos. Una de las principales pérdidas en los Motores de Combustión Interna Alternativos (MCIA) ocurre en la línea de escape. Los MCIA transforman la energía química en energía mecánica a través de la combustión; sin embargo, únicamente el 15-32% de esta energía es eficazmente usada para producir trabajo, mientras que la mayor parte es desperdiciada a través de los gases de escape y el agua de refrigeración del motor. Por ello, estas fuentes de energía pueden ser utilizadas para mejorar la eficiencia global del vehículo. De estas fuentes, los gases de escape muestran un potencial mayor de recuperación de energía residual debido a su mayor contenido exergético. De todos los tipos de Sistemas de Recuperación de Energía Residual, los Ciclos Rankine son considerados como los candidatos más prometedores para mejorar la eficiencia de los MCIA. Sin embargo, la implementación de esta tecnología en los vehículos de pasajeros modernos requiere nuevas características para conseguir una integración compacta y una buena controlabilidad del motor. Mientras que las aplicaciones industriales normalmente operan en puntos de operación estacionarios, en el caso de los vehículos con MCIA existen importantes retos teniendo en cuenta su impacto en el modo de conducción cotidianos. Esta Tesis contribuye al conocimiento y caracterización de un Ciclo Rankine Orgánico acoplado con un Motor de Combustión Interna Alternativo utilizando etanol como fluido de trabajo y un expansor tipo Swash-plate como máquina expansora. El principal objetivo de este trabajo de investigación es obtener y cuantificar el potencial de los Ciclos Rankine Orgánicos (ORC) para la recuperación de la energía residual en motores de automoción. Para ello, una instalación experimental con un Ciclo Rankine Orgánico fue diseñada y construida en el Instituto Universitario "CMT - Motores Térmicos" (Universidad Politécnica de Valencia), que puede ser acoplada a diferentes tipos de motores de combustión interna alternativos. Usando esta instalación, una estimación de las principales variables del ciclo fue obtenida tanto en puntos estacionarios como en transitorios. Un potencial de mejora en torno a un 3.7 % puede ser alcanzada en puntos de alta carga instalando un ORC en un motor gasolina turboalimentado. Respecto a las condiciones transitorias, un control sencillo y robusto basado en PIDs adaptativos permite el control del ORC en perfiles de conducción reales. Las condiciones ideales para testear y validar el control del ORC son alta carga en el motor comenzando con el motor en caliente para conseguir altas temperaturas en el escape que justifiquen la viabilidad de estos ciclos. Para tratar de profundizar en la viabilidad y características de esta aplicación particular, diversos estudios teóricos fueron realizados. Un modelo 1D fue desarrollado usando el software LMS Imagine.Lab Amesim. Un potencial de mejora en torno a un 2.5% en el rendimiento efectivo del motor fue obtenido en condiciones transitorias en los puntos de alta carga como una consecuencia directa de la reducción de 23.5 g/kWh del consumo específico. Para concluir, un estudio termo-económico fue desarrollado teniendo en cuenta los costes de los principales elementos de la instalación y un valor mínimo de 2030 €/kW fue obtenido en el parámetro de Coste Específico de inversión. Además, el estudio exergético muestra que un total de 3.75 kW, 36.5 % de la tasa de destrucción total de exergía, podría ser reducida en los años futuros, teniendo en cuenta las máximas eficiencias considerando restricciones técnicas en los componentes del ciclo. / Les normatives anticontaminants per al transport propulsat per motors de combustió interna alternatius a la Unió Europea mostren límits d'emissió menors a 95 g·CO2/km per a l'any 2020. Per tal d'acomplir aquests límits, s'hauran de realitzar millores al consum de combustible dels vehicles. Una de les principals pèrdues als Motors de combustió interna alternatius (MCIA) ocorre a la línia d'escapament. Els MCIA transformen l'energia química en energia mecànica a través de la combustió; però, únicament el 15-32% d'aquesta energia és usada per produir treball, mentre que la major part és desaprofitada a través dels gasos d'escapament i l'aigua de refrigeració del motor. Per això, aquestes fonts d'energia poden ser utilitzades per millorar l'eficiència global del vehicle. Considerant aquestes dues fonts d'energia, els gasos d'escapament mostren un potencial major de recuperació d'energia residual debut al seu major contingut exergètic. De tots els tipus de Sistemes de Recuperació d'Energia Residual, els Cicles Rankine són considerats com els candidats més prometedors per millorar l'eficiència dels MCIA. No obstant, la implementació d'aquesta tecnologia en els vehicles de passatgers moderns requereix un desenvolupament addicional per aconseguir una integració compacta i una bona controlabilitat del motor. Mentre que les aplicacions industrials normalment operen en punts d'operació estacionaris, en el cas dels vehicles amb MCIA hi han importants reptes a solucionar tenint en compte el funcionament en condicions variables del motor i el seu impacte en la manera de conducció quotidiana del usuari. Aquesta Tesi contribueix al coneixement i caracterització d'un Cicle Rankine Orgànic (ORC) acoblat amb un motor de combustió interna alternatiu (MCIA) utilitzant etanol com a fluid de treball i un expansor tipus Swash-plate com a màquina expansora. El principal objectiu d'aquest treball de recerca és obtenir i quantificar el potencial dels ORCs per a la recuperació de l'energia residual en motors d'automoció. Per aconseguir-ho, una instal·lació experimental amb un ORC va ser dissenyada i construïda a l'Institut "CMT- Motores Térmicos" (Universitat Politècnica de València). Esta installació pot ser acoblada a diferents tipus de MCIAs. Mitjançant assajos experimentals en aquesta installació, una estimació de les principals variables del cicle va ser obtinguda tant en punts estacionaris com en punts transitoris. Un potencial de millora al voltant d'un 3.7% pot ser aconseguida en punts d'alta càrrega instal·lant un ORC acoblat a un motor gasolina turboalimentat. Pel que fa a les condicions transitòries, un control senzill i robust basat en PIDs adaptatius permet el control del ORC en perfils de conducció reals. Les condicions ideals per a testejar i validar el control de l'ORC són alta càrrega al motor començant amb el motor en calent per aconseguir altes temperatures d'escapament que justifiquen la viabilitat d'aquests cicles. Per tractar d'aprofundir en la viabilitat i característiques d'aquesta aplicació particular, diversos estudis teòrics van ser realitzats. Un model 1D va ser desenvolupat usant el programari LMS Imagine.Lab Amesim. Un potencial de millora al voltant d'un 2.5% en el rendiment efectiu del motor va ser obtingut en condicions transitòries en els punts d'alta càrrega com una conseqüència directa de la reducció de 23.5 g/kWh al consum específic. Per concloure, un estudi termo-econòmic va ser desenvolupat tenint en compte els costos dels principals elements de la installació i un valor mínim de 2030 €/kW va ser obtingut en el paràmetre del Cost Específic d'Inversió. A més, l'estudi exergètic mostra que un total de 3.75 kW, 36.5% de la taxa de destrucció total d'exergia, podria ser recuperat en un pròxim, considerant restriccions tècniques en els components del cicle i tenint en compte les màximes eficiències que es poden aconseguir. / Royo Pascual, L. (2017). Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84013
34

Thermal energy recovery of low grade waste heat in hydrogenation process / Återvinning av lågvärdig spillvärme från en hydreringsprocess

Hedström, Sofia January 2014 (has links)
The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which contributes to the increase of the production costs and also impacts the environment. The simulation programs used in industrial engineering enable development and optimization of the operational processes in a cost-effective way. The company Chematur Engineering AB, which supplies chemical plants in many different fields of use on a worldwide basis, was interested in the investigation of the possibilities for effective waste heat recovery from the hydrogenation of dinitrotoluene, which is a sub-process in the toluene diisocyanate manufacture plant. The project objective was to implement waste heat recovery by application of the Organic Rankine Cycle and the Absorption Refrigeration Cycle technologies. Modeling and design of the Organic Rankine Cycle and the Absorption Refrigeration Cycle systems was performed by using Aspen Plus® simulation software where the waste heat carrier was represented by hot water, coming from the internal cooling system in the hydrogenation process. Among the working fluids investigated were ammonia, butane, isobutane, propane, R-123, R-134a, R-227ea, R-245fa, and ammonia-water and LiBr-water working pairs. The simulations have been performed for different plant capacities with different temperatures of the hydrogenation process. The results show that the application of the Organic Rankine Cycle technology is the most feasible solution where the use of ammonia, R-123, R-245fa and butane as the working fluids is beneficial with regards to power production and pay-off time, while R-245fa and butane are the most sustainable choices considering the environment.
35

Estudo teórico e experimental de uma máquina a vapor alternativa. / A theoretical and experimental study of a reciprocating steam engine.

Unzueta, Rodrigo Bernardello 09 May 2014 (has links)
Este trabalho apresenta uma revisão dos ciclos teóricos estudados por outros autores sobre o funcionamento de uma máquina a vapor funcionando como máquina de expansão e propõe um ciclo generalizado para o estudo. Esse ciclo generalizado é equacionado e seus pontos operacionais de otimização são determinados. Ao estudar os ciclos teóricos, verificou-se que a máquina a vapor pode atingir a eficiência isentrópica igual de 100%. Um estudo experimental foi conduzido em uma máquina a vapor, a fim de verificar os fenômenos que ocorrem e que influenciam na sua eficiência, fazendo o funcionamento real se afastar do ciclo teórico. Ao fazer o estudo experimental, verificou-se que a máquina a vapor real utilizada possui baixa eficiência, atingindo um máximo de 10% de eficiência isentrópica. Essa eficiência não é do ciclo e sim do conjunto todo, e é devido a diversos fatores, como, por exemplo, atritos, problemas de lubrificação, imperfeições físicas que provocam o vazamento do fluido de trabalho. Uma simulação computacional é realizada, visando prever o comportamento real da máquina a vapor e comparar com os dados obtidos experimentalmente. Verificando assim se a simulação consegue prever os fenômenos físicos e auxiliar no projeto de uma máquina a vapor. Após analisar os dados simulados, verificou-se que as válvulas possuem grande influência na eficiência isentrópica do ciclo da máquina a vapor. Válvulas de acionamento rápido preveem uma eficiência que pode chegar a 96%, enquanto as válvulas reais provocam uma eficiência de aproximadamente 60% para as mesmas condições de simulação. Uma das principais diferenças entre a simulação e os dados reais é a restrição ao fluxo provocada pelas válvulas, e que exigem coeficientes de descarga específicos para esse tipo de válvula. / This work reviews the theoretical cycles studied by other authors on the operation of a steam engine as an expansion machine and chooses a generalized cycle for the study. This generalized cycle is modeled and the points of optimization are determined. By studying the theoretical cycles, it was found that the steam engine can reach the isentropic efficiency equal to 100%. An experimental study carried out in a steam engine in order to verify the phenomena occurring that influence their effectiveness, moving the actual operation away from the theoretical cycle. By making the experimental study, it was found that the actual steam engine has a low efficiency, reaching a maximum 10% isentropic efficiency. This efficiency is not of the cycle, but of the whole set, and is due to several factors, such as friction problems, lubrication problems, physical imperfections causing leakage of the working fluid. A computer simulation was performed in order to predict the actual behavior of the steam engine and compare with the experimental data. After analyzing the simulated data, it was found that the valves have a great influence on the isentropic efficiency of the steam cycle. Valves operating instantly can reach 96% of isentropic efficiency, while real valves cause an efficiency of approximately 60% for the same simulation conditions. A major difference between the simulation and the actual data is the flow restriction caused by valves, which requires specific discharge coefficients for this type of valve.
36

Estudo teórico da eficiência de uma usina termelétrica baseado em dados reais

Costa, Herson Vargas da January 2012 (has links)
Submitted by Nara Lays Domingues Viana Oliveira (naradv) on 2015-06-12T22:36:19Z No. of bitstreams: 1 000006AB.pdf: 9859828 bytes, checksum: 7298da927fa0f798beed1d1cb69fcb2a (MD5) / Made available in DSpace on 2015-06-12T22:36:19Z (GMT). No. of bitstreams: 1 000006AB.pdf: 9859828 bytes, checksum: 7298da927fa0f798beed1d1cb69fcb2a (MD5) Previous issue date: 2012 / CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, foi realizada a simulação do ciclo térmico da Usina Termoelétrica São Jerônimo – UTSJ. A Usina, muito antiga, possui caldeira do tipo grelha. Na mesma Usina foi instalada uma caldeira experimental de leito fluidizado, para funcionar em paralelo com a existente. O trabalho é iniciado com a modelagem de um ciclo de Rankine simples e segue evoluindo até se estabelecer a configuração mais adequada e representativa na tarefa de simular o modo de trabalho da Usina Termelétrica São Jerônimo – UTSJ. Desta forma, foram adotadas as considerações mais convencionais na prática de projeto de centrais termelétricas cujos sistemas térmicos baseiam-se no ciclo de Rankine. As simulações, que se caracterizam pela resolução simultânea das equações que modelam o ciclo e seus componentes, foram efetuadas através de programa IPSE-pro®. As simulações foram aplicadas para a obtenção dos resultados mais importantes na análise de sistemas térmicos, tais como rendimento térmico do ciclo, potência, vazões mássicas do sistema, calor trocado no gerador de vapor e no condensador, entre outros. Por fim, com objetivo de melhorar o rendimento térmico da planta, são apresentadas algumas alternativas ao sistema atual, tais como o aumento de eficiência da caldeira mediante substituição ou a adição de uma caldeira em paralelo à original. / In this work was made the simulation of the thermal cycle of São Jerônimo - UTSJ thermal power plant. The power plant, very old, has a grate boiler. In the same power plant was installed an experimental fluidized bed boiler, workingin parallel with the existing one. The work starts with the modeling of a simple Rankine cycle and evolves up to establish the most suitable and representative configuration to simulate the mode the work of São Jerônimo –UTSJ thermal power plant. Therefore, in this work it was adopted the more conventional considerations in the design practice for thermal power plants whose systems are based on the Rankine cycle. The simulations, which are characterized by the simultaneous solving of equations that model the cycle and its components, were made through the IPSE-pro® software. The simulations were applied to obtain the main results on the analysis of thermal systems such as, thermal efficiency of the cycle, power, system mass flow, heat exchanged in the steam generator and condenser, among others. Finally, in order to improve the thermal efficiency of the plant, some alternatives to the actual system were presented.
37

Estudo teórico e experimental de uma máquina a vapor alternativa. / A theoretical and experimental study of a reciprocating steam engine.

Rodrigo Bernardello Unzueta 09 May 2014 (has links)
Este trabalho apresenta uma revisão dos ciclos teóricos estudados por outros autores sobre o funcionamento de uma máquina a vapor funcionando como máquina de expansão e propõe um ciclo generalizado para o estudo. Esse ciclo generalizado é equacionado e seus pontos operacionais de otimização são determinados. Ao estudar os ciclos teóricos, verificou-se que a máquina a vapor pode atingir a eficiência isentrópica igual de 100%. Um estudo experimental foi conduzido em uma máquina a vapor, a fim de verificar os fenômenos que ocorrem e que influenciam na sua eficiência, fazendo o funcionamento real se afastar do ciclo teórico. Ao fazer o estudo experimental, verificou-se que a máquina a vapor real utilizada possui baixa eficiência, atingindo um máximo de 10% de eficiência isentrópica. Essa eficiência não é do ciclo e sim do conjunto todo, e é devido a diversos fatores, como, por exemplo, atritos, problemas de lubrificação, imperfeições físicas que provocam o vazamento do fluido de trabalho. Uma simulação computacional é realizada, visando prever o comportamento real da máquina a vapor e comparar com os dados obtidos experimentalmente. Verificando assim se a simulação consegue prever os fenômenos físicos e auxiliar no projeto de uma máquina a vapor. Após analisar os dados simulados, verificou-se que as válvulas possuem grande influência na eficiência isentrópica do ciclo da máquina a vapor. Válvulas de acionamento rápido preveem uma eficiência que pode chegar a 96%, enquanto as válvulas reais provocam uma eficiência de aproximadamente 60% para as mesmas condições de simulação. Uma das principais diferenças entre a simulação e os dados reais é a restrição ao fluxo provocada pelas válvulas, e que exigem coeficientes de descarga específicos para esse tipo de válvula. / This work reviews the theoretical cycles studied by other authors on the operation of a steam engine as an expansion machine and chooses a generalized cycle for the study. This generalized cycle is modeled and the points of optimization are determined. By studying the theoretical cycles, it was found that the steam engine can reach the isentropic efficiency equal to 100%. An experimental study carried out in a steam engine in order to verify the phenomena occurring that influence their effectiveness, moving the actual operation away from the theoretical cycle. By making the experimental study, it was found that the actual steam engine has a low efficiency, reaching a maximum 10% isentropic efficiency. This efficiency is not of the cycle, but of the whole set, and is due to several factors, such as friction problems, lubrication problems, physical imperfections causing leakage of the working fluid. A computer simulation was performed in order to predict the actual behavior of the steam engine and compare with the experimental data. After analyzing the simulated data, it was found that the valves have a great influence on the isentropic efficiency of the steam cycle. Valves operating instantly can reach 96% of isentropic efficiency, while real valves cause an efficiency of approximately 60% for the same simulation conditions. A major difference between the simulation and the actual data is the flow restriction caused by valves, which requires specific discharge coefficients for this type of valve.
38

Thermodynamic Modeling and Thermoeconomic Optimization of Integrated Trigeneration Plants Using Organic Rankine Cycles

Al-Sulaiman, Fahad January 2010 (has links)
In this study, the feasibility of using an organic Rankine cycle (ORC) in trigeneration plants is examined through thermodynamic modeling and thermoeconomic optimization. Three novel trigeneration systems are considered. Each one of these systems consists of an ORC, a heating-process heat exchanger, and a single-effect absorption chiller. The three systems are distinguished by the source of the heat input to the ORC. The systems considered are SOFC-trigeneration, biomass- trigeneration, and solar-trigeneration systems. For each system four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration cases. Comprehensive thermodynamic analysis on each system is carried out. Furthermore, thermoeconomic optimization is conducted. The objective of the thermoeconomic optimization is to minimize the cost per exergy unit of the trigeneration product. The results of the thermoeconomic optimization are used to compare the three systems through thermodynamic and thermoeconomic analyses. This study illustrates key output parameters to assess the trigeneration systems considered. These parameters are energy efficiency, exergy efficiency, net electrical power, electrical to cooling ratio, and electrical to heating ratio. Moreover, exergy destruction modeling is conducted to identify and quantify the major sources of exergy destruction in the systems considered. In addition, an environmental impact assessment is conducted to quantify the amount of CO2 emissions in the systems considered. Furthermore, this study examines both the cost rate and cost per exergy unit of the electrical power and other trigeneration products. This study reveals that there is a considerable efficiency improvement when trigeneration is used, as compared to only electrical power production. In addition, the emissions of CO2 per MWh of trigeneration are significantly lower than that of electrical power. It was shown that the exergy destruction rates of the ORC evaporators for the three systems are quite high. Therefore, it is important to consider using more efficient ORC evaporators in trigeneration plants. In addition, this study reveals that the SOFC-trigeneration system has the highest electrical energy efficiency while the biomass-trigeneration system and the solar mode of the solar trigeneration system have the highest trigeneration energy efficiencies. In contrast, the SOFC-trigeneration system has the highest exergy efficiency for both electrical and trigeneration cases. Furthermore, the thermoeconomic optimization shows that the solar-trigeneration system has the lowest cost per exergy unit. Meanwhile the solar-trigeneration system has zero CO2 emissions and depends on a free renewable energy source. Therefore, it can be concluded that the solar-trigeneration system has the best thermoeconomic performance among the three systems considered.
39

The Conversion of Low-Grade Heat into Power Using Supercritical Rankine Cycles

Chen, Huijuan 10 November 2010 (has links)
Low-grade heat sources, here defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for conversion to power because of the low efficiency of conversion. The utilization of low-grade heat is advantageous for many reasons. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. This work investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat into power. The performance of supercritical Rankine cycles is studied using ChemCAD linked with customized excel macros written in Visual Basic and programs written in C++. The selection of working fluids for a supercritical Rankine cycle is of key importance. A rigorous investigation into the potential working fluids is carried out, and more than 30 substances are screened out from all the available fluid candidates. Zeotropic mixtures are innovatively proposed to be used in supercritical Rankine cycles to improve the system efficiency. Supercritical Rankine cycles and organic Rankine cycles with pure working fluids as well as zeotropic mixtures are studied to optimize the conversion of lowgrade heat into power. The results show that it is theoretically possible to extract and convert more energy from such heat sources using the cycle developed in this research than the conventional organic Rankine cycles. A theory on the selection of appropriate working fluids for different heat source and heat sink profiles is developed to customize and maximize the thermodynamic cycle performance. The outcomes of this research will eventually contribute to the utilization of low-grade waste heat more efficiently.
40

Innovative Desalination Systems Using Low-grade Heat

Li, Chennan 01 January 2012 (has links)
Water and energy crises have forced researchers to seek alternative water and energy sources. Seawater desalination can contribute towards meeting the increasing demand for fresh water using alternative energy sources like low-grade heat. Industrial waste heat, geothermal, solar thermal, could help to ease the energy crisis. Unfortunately, the efficiency of the conventional power cycle becomes uneconomically low with low-grade heat sources, while, at the same time, seawater desalination requires more energy than a conventional water treatment process. However, heat discarded from low-grade heat power cycles could be used as part of desalination energy sources with seawater being used as coolant for the power cycles. Therefore a study of desalination using low-grade heat is of great significance. This research has comprehensively reviewed the current literature and proposes two systems that use low-grade heat for desalination applications or even desalination/power cogeneration. The proposed two cogeneration systems are a supercritical Rankine cycle-type coupled with a reverse osmosis (RO) membrane desalination process, and a power cycle with an ejector coupled with a multi-effect distillation desalination system. The first configuration provides the advantages of making full use of heat sources and is suitable for hybrid systems. The second system has several advantages, such as handling highly concentrated brine without external electricity input as well as the potential of water/power cogeneration when it is not used to treat concentrated brine. Compared to different stand-alone power cycles, the proposed systems could use seawater as coolant to reject low-grade heat from the power cycle to reduce thermal pollution.

Page generated in 0.0918 seconds