Spelling suggestions: "subject:"stateless"" "subject:"tasteless""
11 |
Distributed Data Storage System for Data Survivability in Wireless Sensor NetworksAl-Awami, Louai 03 October 2013 (has links)
Wireless Sensor Networks (WSNs) that use tiny wireless devices capable of communicating,
processing, and sensing promise to have applications in virtually all fields.
Smart homes and smart cities are just few of the examples that WSNs can enable.
Despite their potential, WSNs suffer from reliability and energy limitations.
In this study, we address the problem of designing Distributed Data Storage Systems
(DDSSs) for WSNs using decentralized erasure codes. A unique aspect of WSNs
is that their data is inherently decentralized. This calls for a decentralized mechanism
for encoding and decoding. We propose a distributed data storage framework
to increase data survivability in WSNs. The framework utilizes Decentralized Erasure
Codes for Data Survivability (DEC-DS) which allow for determining the amount
of redundancy required in both hardware and data to allow sensed data to survive
failures in the network.
To address the energy limitations, we show two approaches to implement the
proposed solution in an energy efficient manner. The two approaches employ Random
Linear Network Coding (RLNC) to exploit coding opportunities in order to
save energy and in turn prolong network life. A routing based scheme, called DEC
Encode-and-Forward (DEC-EaF), applies to networks with routing capability, while
the second, DEC Encode-and-Disseminate (DEC-EaD), uses a variation of random
walk to build the target code in a decentralized fashion. We also introduce a new
decentralized approach to implement Luby Transform (LT)-Codes based DDSSs. The
scheme is called Decentralized Robust Soliton Storage (DRSS) and it operates in a
decentralized fashion and requires no coordination between sensor nodes.
The schemes are tested through extensive simulations to evaluate their performance.
We also compare the proposed schemes to similar schemes in the literature.
The comparison considers energy efficiency as well as coding related aspects. Using
the proposed schemes can greatly improve the reliability of WSNs especially under
harsh working conditions. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2013-09-30 22:43:04.509
|
12 |
Exit charts based analysis and design of rateless codes for the erasure and Gaussian channelsMothi Venkatesan, Sabaresan 02 June 2009 (has links)
Luby Transform Codes were the first class of universal erasure codes introduced
to fully realize the concept of scalable and fault‐tolerant distribution of data over
computer networks, also called Digital Fountain. Later Raptor codes, a generalization of
the LT codes were introduced to trade off complexity with performance. In this work,
we show that an even broader class of codes exists that are near optimal for the
erasure channel and that the Raptor codes form a special case. More precisely, Raptorlike
codes can be designed based on an iterative (joint) decoding schedule wherein
information is transferred between the LT decoder and an outer decoder in an iterative
manner. The design of these codes can be formulated as a LP problem using EXIT Charts
and density evolution. In our work, we show the existence of codes, other than the
Raptor codes, that perform as good as the existing ones.
We extend this framework of joint decoding of the component codes to the
additive white Gaussian noise channels and introduce the design of Rateless codes for
these channels. Under this setting, for asymptotic lengths, it is possible to design codes
that work for a class of channels defined by the signal‐to‐noise ratio. In our work, we
show that good profiles can be designed using density evolution and Gaussian
approximation. EXIT charts prove to be an intuitive tool and aid in formulating the code
design problem as a LP problem. EXIT charts are not exact because of the inherent
approximations. Therefore, we use density evolution to analyze the performance of these codes. In the Gaussian case, we show that for asymptotic lengths, a range of
designs of Rateless codes exists to choose from based on the required complexity and
the overhead.
Moreover, under this framework, we can design incrementally redundant
schemes for already existing outer codes to make the communication system more
robust to channel noise variations.
|
13 |
Customized Raptor Code Designs for Finite Lengths and Practical SettingsMahdaviani, Kaveh Unknown Date
No description available.
|
14 |
Coding for Cooperative CommunicationsUppal, Momin Ayub 2010 August 1900 (has links)
The area of cooperative communications has received tremendous research interest
in recent years. This interest is not unwarranted, since cooperative communications
promises the ever-so-sought after diversity and multiplexing gains typically
associated with multiple-input multiple-output (MIMO) communications, without
actually employing multiple antennas. In this dissertation, we consider several cooperative
communication channels, and for each one of them, we develop information
theoretic coding schemes and derive their corresponding performance limits. We next
develop and design practical coding strategies which perform very close to the information
theoretic limits.
The cooperative communication channels we consider are: (a) The Gaussian relay
channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access
channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay
channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv
coding, and derive the achievable rates specifically with BPSK modulation. The CF
strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate
codes and is found to operate within 0.34 dB of the theoretical limit. For
the quasi-static fading relay channel, we assume that no channel state information
(CSI) is available at the transmitters and propose a rateless coded protocol which
uses rateless coded versions of the CF and the decode-forward (DF) strategy. We
implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For
the MAC, we assume quasi-static fading, and consider cooperation in the low-power
regime with the assumption that no CSI is available at the transmitters. We develop
cooperation methods based on multiplexed coding in conjunction with rateless
codes and find the achievable rates and in particular the minimum energy per bit to
achieve a certain outage probability. We then develop practical coding methods using
Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we
consider a CRC and develop a practical multi-level dirty-paper coding strategy using
LDPC codes for channel coding and trellis-coded quantization for source coding. The
designed scheme is found to operate within 0.78 dB of the theoretical limit.
By developing practical coding strategies for several cooperative communication
channels which exhibit performance close to the information theoretic limits, we show
that cooperative communications not only provide great benefits in theory, but can
possibly promise the same benefits when put into practice. Thus, our work can be
considered a useful and necessary step towards the commercial realization of cooperative
communications.
|
15 |
Applications of graph-based codes in networks: analysis of capacity and design of improved algorithmsVellambi, Badri Narayanan 25 August 2008 (has links)
The conception of turbo codes by Berrou et al. has created a renewed interest in modern graph-based codes. Several encouraging results that have come to light since then have fortified the role these codes shall play as potential solutions for present and future communication problems.
This work focuses on both practical and theoretical aspects of graph-based codes. The
thesis can be broadly categorized into three parts. The first part of the thesis focuses on
the design of practical graph-based codes of short lengths. While both low-density parity-check
codes and rateless codes have been shown to be asymptotically optimal under the message-passing (MP) decoder, the performance of short-length codes from these families under MP decoding is starkly sub-optimal. This work first addresses the
structural characterization of stopping sets to understand this sub-optimality. Using this
characterization, a novel improved decoder that offers several orders of magnitude improvement in bit-error rates is introduced. Next, a novel scheme for the design of a good rate-compatible family of punctured codes is proposed.
The second part of the thesis aims at establishing these codes as a good tool to develop
reliable, energy-efficient and low-latency data dissemination schemes in networks. The problems of broadcasting in wireless multihop networks and that of unicast in delay-tolerant networks are investigated. In both cases, rateless coding is seen to offer an elegant means of achieving the goals of the chosen communication protocols. It was noticed that the ratelessness and the randomness in encoding process make this scheme
specifically suited to such network applications.
The final part of the thesis investigates an application of a specific class of codes called
network codes to finite-buffer wired networks. This part of the work aims at establishing a framework for the theoretical study and understanding of finite-buffer networks. The
proposed Markov chain-based method extends existing results to develop an iterative
Markov chain-based technique for general acyclic wired networks. The framework not only estimates the capacity of such networks, but also provides a means to monitor network traffic and packet drop rates on various links of the network.
|
16 |
Trapping Sets in Fountain Codes over Noisy ChannelsOROZCO, VIVIAN 04 November 2009 (has links)
Fountain codes have demonstrated great results for the binary erasure channel and have already been incorporated into several international standards to recover lost packets at the application layer. These include multimedia broadcast/multicast sessions and digital video broadcasting on global internet-protocol. The rateless property of Fountain codes holds great promise for noisy channels. These are more sophisticated mathematical models representing errors on communications links rather than only erasures. The practical implementation of Fountain codes for these channels, however, is hampered by high decoding cost and delay.
In this work we study trapping sets in Fountain codes over noisy channels and their effect on the decoding process. While trapping sets have received much attention for low-density parity-check (LDPC) codes, to our knowledge they have never been fully explored for Fountain codes. Our study takes into account the different code structure and the dynamic nature of Fountain codes. We show that 'error-free' trapping sets exist for Fountain codes. When the decoder is caught in an error-free trapping set it actually has the correct message estimate, but is unable to detect this is the case. Thus, the decoding process continues, increasing the decoding cost and delay for naught. The decoding process for rateless codes consists of one or more decoding attempts. We show that trapping sets may reappear as part of other trapping sets on subsequent decoding attempts or be defeated by the reception of more symbols. Based on our observations we propose early termination methods that use trapping set detection to obtain improvements in realized rate, latency, and decoding cost for Fountain codes. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-10-29 14:33:06.548
|
17 |
Cooperative Communication In Store And Forward Wireless Networks Using Rateless CodesBansal, Gaurav 05 1900 (has links) (PDF)
In this thesis, we consider a cooperative relay-assisted communication system that uses rateless codes. When multiple relays are present, the relay with the highest channel gain to the source is the first to successfully decode a message from the source and forward it to the destination. Thus, the unique properties of rateless codes ensure that both rate adaptation and relay selection occur without the transmitting source or relays acquiring instantaneous channel knowledge. We show that in such cooperative systems, buffering messages at relays significantly increases throughput. We develop a novel analysis of these systems that combines the communication-theoretic aspects of cooperation over fading channels with the queuing-theoretic aspects associated with buffering. Closed-form expressions are derived for the throughput and end-to-end delay for the general case in which the channels between various nodes are not statistically identical. Results are also shown for the benchmark system that does not buffer messages.
Though relay selection combined with buffering of messages at the relays substantially increases the throughput of a cooperative network, it also increases the end-to-end delays due to the additional queuing delays at the relay nodes. In order to overcome this, we propose a novel method that exploits a unique property of rateless codes that enables a receiver to decode a message from non-contiguous and unordered portions of the received signal. In it, each relay, depending on its queue length, ignores its received coded bits with a given probability. We show that this substantially reduces the end-to-end delays while retaining almost all of the throughput gain achieved by buffering. In effect, the method increases the odds that the message is first decoded by a relay with a smaller queue. Thus, the queuing load is balanced across the relays and traded off with transmission times. We derive conditions for the stability of this system when the various channels undergo fading. Despite encountering analytically intractable G/GI/1 queues in our system, we also gain insights about the method by analyzing a similar system with a simpler model for the relay-to-destination transmission times.
Next we combine the single relay selection scheme at the source with physical layer power control at the relays (due to the diversity provided by the rateless codes, power control at the source is not needed). We derive an optimal power control policy that minimizes the relay to destination transmission time. Due to its computational and implementation complexity, we develop another heuristic easily implementable near optimal policy. In this policy, power allocated turns out to be inversely proportional to the square root of channel gain. We also see that this policy performs better than the channel inversion policy. Our power control solution substantially decreases the mean end-to-end delays with a marginal increase in throughput also. Finally, we combine bit dropping with power control at the relays which further improves the system performance.
|
18 |
Wireless Broadcasting with Network CodingLu, Lu January 2011 (has links)
Wireless digital broadcasting applications such as digital audio broadcast (DAB) and digital video broadcast (DVB) are becoming increasingly popular since the digital format allows for quality improvements as compared to traditional analogue broadcast. The broadcasting is commonly based on packet transmission. In this thesis, we consider broadcasting over packet erasure channels. To achieve reliable transmission, error-control schemes are needed. By carefully designing the error-control schemes, transmission efficiency can be improved compared to traditiona lautomatic repeat-request (ARQ) schemes and rateless codes. Here, we first study the application of a novel binary deterministic rateless (BDR) code. Then, we focus on the design of network coding for the wireless broadcasting system, which can significantly improve the system performance compared to traditional ARQ. Both the one-hop broadcasting system and a relay-aided broadcasting system areconsidered. In the one-hop broadcasting system, we investigate the application of systematic BDR (SBDR) codes and instantaneously decodable network coding (IDNC). For the SBDR codes, we determine the number of encoded redundancy packets that guarantees high broadcast transmission efficiencies and simultaneous lowcomplexity. Moreover, with limited feedback the efficiency performance can be further improved. Then, we propose an improved network coding scheme that can asymptotically achieve the theoretical lower bound on transmission overhead for a sufficiently large number of information packets. In the relay-aided system, we consider a scenario where the relay node operates in half duplex mode, and transmissions from the BS and the relay, respectively, are over orthogonal channels. Based on random network coding, a scheduling problem for the transmissions of redundancy packets from the BS and the relay is formulated. Two scenarios; namely instantaneous feedback after each redundancy packet, and feedback after multiple redundancy packets are investigated. We further extend the algorithms to multi-cell networks. Besides random network coding, IDNC based schemes are proposed as well. We show that significant improvements in transmission efficiency are obtained as compared to previously proposed ARQ and network-coding-based schemes. / QC 20110907
|
19 |
Modern Error Control Codes and Applications to Distributed Source CodingSartipi, Mina 15 August 2006 (has links)
This dissertation first studies two-dimensional wavelet codes (TDWCs). TDWCs
are introduced as a solution to the problem of designing a 2-D code that has low decoding-
complexity and has the maximum erasure-correcting property for rectangular burst erasures.
The half-rate TDWCs of dimensions N<sub>1</sub> X N<sub>2</sub> satisfy the Reiger bound with equality for
burst erasures of dimensions N<sub>1</sub> X N<sub>2</sub>/2 and N<sub>1</sub>/2 X N<sub>2</sub>, where GCD(N<sub>1</sub>,N<sub>2</sub>) = 2. Examples
of TDWC are provided that recover any rectangular burst erasure of area N<sub>1</sub>N<sub>2</sub>/2. These
lattice-cyclic codes can recover burst erasures with a simple and efficient ML decoding.
This work then studies the problem of distributed source coding for two and three correlated signals using channel codes. We propose to model the distributed source coding
problem with a set of parallel channel that simplifies the distributed source coding to de-
signing non-uniform channel codes. This design criterion improves the performance of the
source coding considerably. LDPC codes are used for lossless and lossy distributed source
coding, when the correlation parameter is known or unknown at the time of code design.
We show that distributed source coding at the corner point using LDPC codes is simplified
to non-uniform LDPC code and semi-random punctured LDPC codes for a system of two
and three correlated sources, respectively. We also investigate distributed source coding at
any arbitrary rate on the Slepian-Wolf rate region. This problem is simplified to designing
a rate-compatible LDPC code that has unequal error protection property. This dissertation
finally studies the distributed source coding problem for applications whose wireless channel is an erasure channel with unknown erasure probability. For these application, rateless
codes are better candidates than LDPC codes. Non-uniform rateless codes and improved
decoding algorithm are proposed for this purpose. We introduce a reliable, rate-optimal,
and energy-efficient multicast algorithm that uses distributed source coding and rateless
coding. The proposed multicast algorithm performs very close to network coding, while it
has lower complexity and higher adaptability.
|
20 |
Performance evaluation and protocol design of fixed-rate and rateless coded relaying networksNikjah, Reza 06 1900 (has links)
The importance of cooperative relaying communication in substituting for, or complementing,
multiantenna systems is described, and a brief literature review is presented.
Amplify-and-forward (AF) and decode-and-forward (DF) relaying are investigated and
compared for a dual-hop relay channel. The optimal strategy, source and relay optimal
power allocation, and maximum cooperative gain are determined for the relay channel. It
is shown that while DF relaying is preferable to AF relaying for strong source-relay links,
AF relaying leads to more gain for strong source-destination or relay-destination links.
Superimposed and selection AF relaying are investigated for multirelay, dual-hop relaying.
Selection AF relaying is shown to be globally strictly outage suboptimal. A necessary
condition for the selection AF outage optimality, and an upper bound on the probability of
this optimality are obtained. A near-optimal power allocation scheme is derived for superimposed
AF relaying.
The maximum instantaneous rates, outage probabilities, and average capacities of multirelay,
dual-hop relaying schemes are obtained for superimposed, selection, and orthogonal
DF relaying, each with parallel channel cooperation (PCC) or repetition-based cooperation
(RC). It is observed that the PCC over RC gain can be as much as 4 dB for the outage
probabilities and 8.5 dB for the average capacities. Increasing the number of relays deteriorates
the capacity performance of orthogonal relaying, but improves the performances of
the other schemes.
The application of rateless codes to DF relaying networks is studied by investigating
three single-relay protocols, one of which is new, and three novel, low complexity multirelay
protocols for dual-hop networks. The maximum rate and minimum energy per bit and
per symbol are derived for the single-relay protocols under a peak power and an average
power constraint. The long-term average rate and energy per bit, and relay-to-source usage
ratio (RSUR), a new performance measure, are evaluated for the single-relay and multirelay
protocols. The new single-relay protocol is the most energy efficient single-relay scheme
in most cases. All the multirelay protocols exhibit near-optimal rate performances, but are
vastly different in the RSUR.
Several future research directions for fixed-rate and rateless coded cooperative systems,
and frameworks for comparing these systems, are suggested. / Communications
|
Page generated in 0.0778 seconds