• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 18
  • 7
  • Tagged with
  • 68
  • 20
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Consumption measurements on SnO2 sensors in low and normal oxygen concentration

Schmid, Wolf. Unknown Date (has links) (PDF)
University, Diss., 2004--Tübingen.
32

Untersuchungen zum Polymerisationsmechanismus der Gilch-Reaktion

Wiesecke, Jens. Unknown Date (has links)
Techn. Universiẗat, Diss., 2004--Darmstadt.
33

Simulation katalytischer Monolithreaktoren unter Verwendung detaillierter Modelle für Chemie und Transport

Tischer, Steffen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Heidelberg.
34

Polymeranaloge Carbanilierung von Cellulose Beiträge zur Methodenentwicklung und Untersuchung von Depolymerisationsprozessen /

Fischer, Martin. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Dresden.
35

Untersuchungen zum Reaktionsmechanismus der [5,5]-sigmatropen Umlagerung von Tetrahydroheptalenen

Razus, Stefan-Alexandru Unknown Date (has links)
Techn. Univ., Diss., 2005--Darmstadt
36

Reaktive nahe- und überkritische Extraktion von Braunkohlen mit Alkanolen

Wollmerstädt, Hendrik 20 July 2020 (has links)
Gegenstand der vorliegenden Arbeit ist die Wandlung von Weichbraunkohlen in nie-dermolekulare Produkte durch Reaktion mit Alkanolen, insbesondere Ethanol, unter nahe- bzw. überkritischen Bedingungen. Als potenziell verwertbare Produkte ent-stehen eine ethanollösliche Fraktion, die hohe Anteile an heteroatomfreien aroma-tischen Verbindungen sowie Phenolen enthält, bzw. eine heptanlösliche Fraktion, die große Mengen wachsähnlicher, aliphatischer Komponenten enthält. Ein Screening von Lösungsmitteln verschiedener Stoffklassen ergab, dass neben Tetrahydronaphthalin insbesondere der Einsatz von n-Alkanolen mit mindestens zwei Kohlenstoffatomen zu hohen Umsätzen des makromolekularen Anteils der Kohle in wesentlich niedermolekularere lösliche Verbindungen führt. Ethanol wird aufgrund seines vergleichsweise niedrigen Preises, der Verfügbarkeit in großen, vorwiegend aus biogenen Quellen hergestellten Mengen sowie der leichten Abtrennbarkeit vom Extrakt für die weiteren Untersuchungen ausgewählt. Anhand systematischer Untersuchungen des Einflusses verschiedener Reaktions-parameter wie Temperatur, Verweilzeit oder Dichte des Lösungsmittels wird der Prozess hinsichtlich Kohleumsatz und Ethanolverbrauch optimiert. Es zeigt sich, dass bei günstiger Parameterwahl nahezu der gesamte makromolekulare Anteil der Kohle in lösliche Produkte überführt werden kann. Kohlezusammensetzung, Reaktionstem-peratur sowie Verweilzeit stellen die Haupteinflussgrößen auf den Prozess dar. Ein großes Augenmerk liegt auf der Analytik der festen, flüssigen und gasförmigen Produktfraktionen mit einer großen Breite instrumenteller Techniken. Deren Ziel ist die Aufklärung der ablaufenden Reaktionen zwischen Kohle und Alkanol. Bisher war wenig darüber bekannt, welche Typen von Verbindungen bzw. funktionellen Gruppen der Braunkohle mit Ethanol reagieren und zu dessen Zersetzung beitragen. Um diese Fragestellung beantworten zu können, wird die Komplexität des Systems Kohle-Alkanol reduziert. Dies wird durch die Untersuchung von Reaktionen zwischen Ethanol und Modellkomponenten, die für Braunkohlen typische funktionelle Gruppen tragen, erreicht. Darüber hinaus erfolgt auch eine Betrachtung des Einflusses von Erdalkali- und Alkalimetallcarboxylaten bzw. -phenolaten, da derartige Bindungsformen aufgrund des hohen Anteils acider funktioneller Gruppen in Braunkohlen häufig auftreten. Im Ergebnis ist festzuhalten, dass ein hoher Umsatz des makromolekularen Anteils der Kohle in niedermolekulare Produkte nur möglich ist, wenn auch die Zersetzung des Alkanols schnell abläuft. Dies ist genau dann der Fall, wenn in der Reaktions-mischung ein hoher Anteil an Komponenten vorliegt, die Hydroxy-, Carboxy- oder Ethergruppen tragen. Diese Gruppen unterstützen in unterschiedlichem Ausmaß die Dehydrierung und anschließende Spaltung des Ethanols in Kohlenmonoxid und Methan bzw. die Dehydratisierung zu Ethen. Dabei treten Ionen und Radikale als reaktive Zwischenprodukte auf, welche die Fragmentierung der Kohlematrix unter-stützen. Alle relevanten Reaktionspfade werden schließlich zu einem globalen Reak-tionsschema zusammengeführt.:1 Motivation und Problemstellung 2 Stand der Wissenschaft und Technik 2.1 Eigenschaften von Weichbraunkohlen 2.1.1 Inkohlungsreihe und Klassifikation von Kohlen 2.1.2 Zusammensetzung von Braunkohlen 2.1.3 Makromolekulare Struktur der organischen Anteile von Braunkohlen 2.1.4 Einsetzbarkeit von Braunkohlen in thermochemischen Konversionsprozessen 2.2 Kohleverflüssigungsprozesse 2.2.1 Systematik 2.2.2 Pyrolyse 2.2.3 Bergius-Pier-Verfahren 2.2.4 Pott-Broche-Verfahren 2.3 Extraktion von Kohlen mit nahe- und überkritischen Lösungsmitteln 2.4 Alkanole als reaktive Lösungsmittel 2.4.1 Lösungseigenschaften 2.4.2 Reaktionen im unterkritischen Zustand 2.4.3 Reaktionen von reinen Alkanolen im nahe- und überkritischen Bereich 2.4.4 Reaktionen von Alkanolen mit Modellkomponenten im nahe- und überkritischen Bereich 2.5 Umsetzung von Kohlen, Biomassen und Kunststoffen mit n-Alkanolen 2.5.1 Umesterung von Triglyceriden 2.5.2 Depolymerisation von Kunststoffen 2.5.3 Verflüssigung von Ligninen 2.5.4 Upgrading von Bioölen 2.5.5 Extraktion von Braunkohlen 2.6 Produkte der Extraktion von Braunkohlen mit Ethanol 2.7 Reaktionsmechanismus der Extraktion von Braunkohlen mit Ethanol 3 Experimentelles Vorgehen und verwendete Analytik 3.1 Präzisierung der Aufgabenstellung und Herangehensweise 3.2 Aufbereitung der Rohkohlen 3.3 Kohleextraktion 3.3.1 Autoklavenversuche 3.3.2 Semikontinuierliche Kohleextraktion 3.4 Produktaufbereitung 3.4.1 Parametervariation 3.4.2 Ergänzende Versuche zur Parametervariation 3.4.3 Experimente mit Modellkomponenten 3.5 Analytische Methoden 3.5.1 Analyse der Gasproben 3.5.2 Analyse der Extraktfraktionen 3.5.3 Analyse fester Proben (Kohlen, Rückstände) 3.6 Bilanzierung der Versuche 3.6.1 Massenbilanz 3.6.2 Elementbilanz 3.7 Berechnung verschiedener Größen zur Prozessbewertung 3.8 Fehlerbetrachtung und Wiederholbarkeit 4 Ergebnisse und Auswertung der Untersuchungen 4.1 Charakterisierung der Einsatzstoffe 4.2 Lösungsmittel-Screening 4.3 Parametereinfluss auf Produktausbeuten 4.3.1 Untersuchte Parameter und Bereiche 4.3.2 Temperatur- und Druckverlauf im Autoklav 4.3.3 Einfluss der Reaktionstemperatur 4.3.4 Einfluss der Verweilzeit 4.3.5 Einfluss des Kohlewassergehaltes 4.3.6 Einfluss der Dichte des überkritischen Ethanols 4.3.7 Einfluss der Korngröße 4.3.8 Einfluss der Gasatmosphäre 4.3.9 Einfluss der Kohlezusammensetzung 4.3.10 Einfluss der Kohlevorbehandlung 4.3.11 Einfluss der Kettenlänge des Alkanols 4.3.12 Einfluss der Reaktionsführung 4.4 Zwischenfazit Parametereinfluss 5 Detaillierte Produktanalytik 5.1 Charakterisierung des Produktgases 5.2 Charakterisierung der Extraktfraktionen 5.2.1 Elementarzusammensetzung 5.2.2 Molekülgrößenverteilung 5.2.3 ATR-FTIR-Spektroskopie 5.2.4 13C- und 1H-NMR-Spektroskopie 5.2.5 Gaschromatographie 5.3 Charakterisierung des Rückstands 5.3.1 Elementarzusammensetzung 5.3.2 ATR-FTIR-Spektroskopie 5.3.3 Röntgenphotoelektronenspektroskopie 5.4 Zwischenfazit Produktanalytik 6 Untersuchung der Reaktionswege von Modellkomponenten 6.1 Produktgasmengen und entstehendes Wasser 6.2 Ethanollösliche Produkte 6.3 Ableitung möglicher Reaktionswege 6.3.1 Phenol und Benzoesäure 6.3.2 Diphenylether 6.3.3 Phenetol und Veratrol 6.3.4 Ethanol 6.4 Zwischenfazit Modellkomponenten 7 Diskussion der Ergebnisse 7.1 Verwertbarkeit der Produkte 7.2 Beeinflussung von Kohleumsatz und Extraktausbeute 7.3 Ethanolverbrauch 7.4 Schema der ablaufenden Reaktionen 8 Zusammenfassung und Ausblick A Anhang B Literaturverzeichnis C Abkürzungsverzeichnis D Verwendete Formelzeichen / The subject of the present work is the conversion of lignite into low-molecular products by reaction with alkanols, especially ethanol, under near- or supercritical conditions. The ethanol-soluble fraction, which contains high amounts of heteroatom-free aromatic compounds and phenols as well as the heptane-soluble fraction, which contains large amounts of wax-like, aliphatic components are both potentially usable products. A screening of solvents of different substance classes showed that, in addition to tetrahydronaphthalene, the use of n-alkanols with at least two carbon atoms leads to high conversions of the macromolecular coal matrix into soluble compounds with much lower molecular weight. Ethanol is selected for further investigations because of its comparatively low price, its availability in large quantities, mainly from biogenic sources, and its simple separability from the extract. The process is optimized in regard to coal conversion and ethanol consumption by means of systematic investigations of the influence of various reaction parameters such as temperature, residence time or density of the solvent. It has been shown that almost the entire macromolecular coal content can be converted into soluble products if the parameters are selected favorably. Coal composition, reaction temperature and residence time are the main factors influencing the process. A great deal of attention is paid to the analysis of solid, liquid and gaseous product fractions using a wide range of instrumental techniques. The aim of these techniques is to clarify the reactions taking place between coal and alkanol. So far, little was known about which types of compounds or functional groups of lignite react with ethanol and contribute to its decomposition. To answer this question, the complexity of the coal-alkanol system is reduced. This has been achieved by studying reactions between ethanol and model components containing functional groups typical for lignite. In addition, the influence of alkaline earth and alkali metal carboxylates and phenolates is also considered, since such forms of bonding are common due to the high proportion of acidic functional groups in lignite. In conclusion, it can be stated that a high conversion of the macromolecular coal content into low-molecular products is only possible if the decomposition of the alkanol takes place rapidly. This is the case when the reaction mixture contains a high pro-portion of components containing hydroxy, carboxy and ether groups. These groups support, to varying degrees, the dehydrogenation and cleavage of ethanol into carbon monoxide and methane or the dehydration to ethene. Within these reactions, ions and radicals occur as reactive intermediates which support the fragmentation of the carbon matrix. All relevant reaction pathways are finally combined to form a global reaction scheme.:1 Motivation und Problemstellung 2 Stand der Wissenschaft und Technik 2.1 Eigenschaften von Weichbraunkohlen 2.1.1 Inkohlungsreihe und Klassifikation von Kohlen 2.1.2 Zusammensetzung von Braunkohlen 2.1.3 Makromolekulare Struktur der organischen Anteile von Braunkohlen 2.1.4 Einsetzbarkeit von Braunkohlen in thermochemischen Konversionsprozessen 2.2 Kohleverflüssigungsprozesse 2.2.1 Systematik 2.2.2 Pyrolyse 2.2.3 Bergius-Pier-Verfahren 2.2.4 Pott-Broche-Verfahren 2.3 Extraktion von Kohlen mit nahe- und überkritischen Lösungsmitteln 2.4 Alkanole als reaktive Lösungsmittel 2.4.1 Lösungseigenschaften 2.4.2 Reaktionen im unterkritischen Zustand 2.4.3 Reaktionen von reinen Alkanolen im nahe- und überkritischen Bereich 2.4.4 Reaktionen von Alkanolen mit Modellkomponenten im nahe- und überkritischen Bereich 2.5 Umsetzung von Kohlen, Biomassen und Kunststoffen mit n-Alkanolen 2.5.1 Umesterung von Triglyceriden 2.5.2 Depolymerisation von Kunststoffen 2.5.3 Verflüssigung von Ligninen 2.5.4 Upgrading von Bioölen 2.5.5 Extraktion von Braunkohlen 2.6 Produkte der Extraktion von Braunkohlen mit Ethanol 2.7 Reaktionsmechanismus der Extraktion von Braunkohlen mit Ethanol 3 Experimentelles Vorgehen und verwendete Analytik 3.1 Präzisierung der Aufgabenstellung und Herangehensweise 3.2 Aufbereitung der Rohkohlen 3.3 Kohleextraktion 3.3.1 Autoklavenversuche 3.3.2 Semikontinuierliche Kohleextraktion 3.4 Produktaufbereitung 3.4.1 Parametervariation 3.4.2 Ergänzende Versuche zur Parametervariation 3.4.3 Experimente mit Modellkomponenten 3.5 Analytische Methoden 3.5.1 Analyse der Gasproben 3.5.2 Analyse der Extraktfraktionen 3.5.3 Analyse fester Proben (Kohlen, Rückstände) 3.6 Bilanzierung der Versuche 3.6.1 Massenbilanz 3.6.2 Elementbilanz 3.7 Berechnung verschiedener Größen zur Prozessbewertung 3.8 Fehlerbetrachtung und Wiederholbarkeit 4 Ergebnisse und Auswertung der Untersuchungen 4.1 Charakterisierung der Einsatzstoffe 4.2 Lösungsmittel-Screening 4.3 Parametereinfluss auf Produktausbeuten 4.3.1 Untersuchte Parameter und Bereiche 4.3.2 Temperatur- und Druckverlauf im Autoklav 4.3.3 Einfluss der Reaktionstemperatur 4.3.4 Einfluss der Verweilzeit 4.3.5 Einfluss des Kohlewassergehaltes 4.3.6 Einfluss der Dichte des überkritischen Ethanols 4.3.7 Einfluss der Korngröße 4.3.8 Einfluss der Gasatmosphäre 4.3.9 Einfluss der Kohlezusammensetzung 4.3.10 Einfluss der Kohlevorbehandlung 4.3.11 Einfluss der Kettenlänge des Alkanols 4.3.12 Einfluss der Reaktionsführung 4.4 Zwischenfazit Parametereinfluss 5 Detaillierte Produktanalytik 5.1 Charakterisierung des Produktgases 5.2 Charakterisierung der Extraktfraktionen 5.2.1 Elementarzusammensetzung 5.2.2 Molekülgrößenverteilung 5.2.3 ATR-FTIR-Spektroskopie 5.2.4 13C- und 1H-NMR-Spektroskopie 5.2.5 Gaschromatographie 5.3 Charakterisierung des Rückstands 5.3.1 Elementarzusammensetzung 5.3.2 ATR-FTIR-Spektroskopie 5.3.3 Röntgenphotoelektronenspektroskopie 5.4 Zwischenfazit Produktanalytik 6 Untersuchung der Reaktionswege von Modellkomponenten 6.1 Produktgasmengen und entstehendes Wasser 6.2 Ethanollösliche Produkte 6.3 Ableitung möglicher Reaktionswege 6.3.1 Phenol und Benzoesäure 6.3.2 Diphenylether 6.3.3 Phenetol und Veratrol 6.3.4 Ethanol 6.4 Zwischenfazit Modellkomponenten 7 Diskussion der Ergebnisse 7.1 Verwertbarkeit der Produkte 7.2 Beeinflussung von Kohleumsatz und Extraktausbeute 7.3 Ethanolverbrauch 7.4 Schema der ablaufenden Reaktionen 8 Zusammenfassung und Ausblick A Anhang B Literaturverzeichnis C Abkürzungsverzeichnis D Verwendete Formelzeichen
37

The Reaction Mechanism of Cellular U snRNP Assembly / Der Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung

Chari, Ashwin January 2009 (has links) (PDF)
Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors (“assembly chaperones”) for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis. / Makromolekulare Komplexe, auch molekulare Maschinen genannt, ermöglichen eine grosse Vielfalt biologischer Reaktionen und Aufgaben, die für das Überleben von Organismen kritisch sind. Diese Komplexe bestehen entweder nur aus Protein, oder setzen sich aus Protein und Nukleinsäure (DNA oder RNA) zusammen. Prominente Beispiele für diese Klassen molekularer Maschinen sind das Proteosom, das Nukleosom oder das Ribosom. Wie sich solche Einheiten innerhalb einer Zelle zusammenlagern ist eine grundlegende Frage der Molekularbiologie. Frühere Studien hatten angeduetet, dass es möglich ist sogar sehr grosse Komplexe wie das Ribosom in vitro aus gereinigten Bestandteilen zu einem aktiven Partikel zu rekonstruieren. Die Strukturinformation, die für die Bildung von makromolekularen Komplexen erforderlich ist, liegt also in den Untereinheiten selbst. Im Gegensatz dazu mehren sich heute die Hinweise dafür, dass sich viele makromolekulare Komplexe nicht spontan zusammenlagern, sondern die Aktivität assistierender Faktoren („Assembly Chaperone“) für ihre Reifung benötigen. In dieser Arbeit wurde der Zusammenbau von RNA-Protein (RNP) Partikeln durch eine Kombination aus Biochemie und Strukturbiologie untersucht. Ein ergiebiges System, um diesen Prozess zu studieren, ist die Biogenese der RNPs (U snRNPs) des Spleissosoms. Aufgabe dieser molekularen Maschine ist das Herausschneiden nicht-kodierender Introns und das Zusammenfügen kodiereneder Exons um so funktionelle mRNA zu bilden. Die Zusammensetzung und Architektur von U snRNPs sind gut definiert. Auch ist der Kern- Zytoplasma Transport, der für die Reifung dieser Partikel notwendig sind, detailliert beschrieben worden. Außerdem weisen neueste Studien darauf hin, dass die Bildung von U snRNPs in vivo durch eine komplexe Maschinerie, die aus den Protein-Arginin- Methyltransferase 5 (PRMT5)- und Survival-Motor-Neuron (SMN)- Komplexen besteht, vermittelt wird. Die Entschlüsselung des Reaktionsmechanismus des zellulärem U snRNP Zusammenbaus würde als Musterbeispiel für unser Verständnis dienen, wie RNPs in einer Zelle gebildet werden. Folgende Erkenntnisse wurden in dieser Arbeit gewonnen: 1) Es wurde zunächst versucht eine komplette Bestandsliste der Untereinheiten des SMN-Komplexes zu erstellen. Dies wurde durch die biochemische Definition und Charakterisierung einer atypischen Komponente dieses Komplexes, des Unrip Proteins, erreicht. Dieses Protein bindet ausschliesslich im Zytoplasma an den SMN-Komplex und beeinflusst dessen subzelluläre Lokalisation. 2) Die komplette Inventarisierung des SMN-Komplexes ermöglichte die Untersuchung der Wechselwirkung aller Untereinheiten und somit die Untersuchung seiner Architektur. Diese Studie zeigte, dass die Proteine SMN, Gemin7 und Gemin8 das Rückgrat des SMN-Komplexes bilden auf dem die restlichen Untereinheiten modular angeordnet werden. 3) Die zwei oben erwähnten Studien bildeten die Grundlage, den Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung zu entschlüsseln. Zunächst wurde eine frühe Phase im SMN-vermittelten U snRNP Zusammenbau analysiert. Es konnte gezeigt werden, dass zwei Untereinheiten des U7 snRNP (LSm10 und 11) mit dem PRMT5-Komplex wechselwirken, ohne methyliert zu werden. Dies deutet darauf hin, dass die unterstützende Rolle des PRMT5-Komplexes von seiner Methylierungsaktivität unabhängig ist. 4) Schlüsselintermediate im Zusammenschluss von U snRNPs wurden identifiziert und durch eine Kombination von Biochemie und Strukturbiologie charakterisiert. In einer ersten Stufe bildet sich ein Vorgänger von U snRNPs mit einem Sedimentationskoeffizienten von 6S aus. Dieses Intermediat, bestehend aus pICln (einer Untereinheit des PRMT5-Komplexes) und Sm Proteinen, stellt eine kinetische Falle in der U snRNP Zusammenlagerung dar. Das Voranschreiten zum maturen U snRNP hängt von der Aktivität des SMN-Komplexes ab, der als Katalysator wirkt. Weiterhin konnte gezeigt werden, dass die Ausbildung von U snRNPs strukturell ähnlich zu der Reaktion verläuft, die Polymerasen mit geringer Prozessivität an der DNA verankert und die als „clamp-loading“ bezeichnet wird. 5) Der menschliche SMN-Komplex setzt sich aus mehreren Untereinheiten zusammen. Es ist jedoch unbekannt, ob alle Teile des Komplexes für die Zusammenlagerung von U snRNPs notwendig sind. Diese Frage wurde durch eine Kombination aus Bioinformatik und Biochemie adressiert. Durch Datenbanksuchen in komplett sequenzierten Genomen wurde festgestellt, dass die evolutionär ursprüngliche Form des SMN-Komplexes aus den zwei Proteinen SMN und Gemin2 besteht. Die biochemische Reinigung des Komplexes der Taufliege Drosophila melanogaster offenbarte, dass er auch in diesem Organismus aus denselben zwei Untereinheiten zusammengebaut ist. Außerdem wurde der Beweis erbracht, dass das SMN-Gemin2 heterodimer notwendig und hinreichend ist, um U snRNPs akkurat zusammenzulagern. Zukünftige Studien werden weitere detaillierte Ansichten des Reaktionsmechanismus in der zellulären Zusammenlagerung von U snRNPs liefern. Die Ergebnisse, die in der vorliegenden Arbeit erhalten wurden, deuten darauf hin, dass die Untereinheiten SMN und Gemin2 des SMN-Komplexes für den Zusammenbau von U snRNPs hinreichend sind. Was also ist die Funktion der weiteren Untereinheiten des SMN-Komplexes? Die Rekonstitutionsschemata, die in dieser Arbeit etabliert wurden, werden essentiell für die Beantwortung dieser Frage sein. Darüberhinaus werden weitere mechanistische Einsichten in die Zusammenlagerung von U snRNPs von der Ermittlung von Strukturen der Assembly-Maschinerie in verschiedenen Zuständen abhängen. Die Voraussetzung für diese strukturbiologische Untersuchungen, die Möglichkeit ausreichende Mengen homogener Komplexe herzustellen, ist ebenfalls in dieser Arbeit geschaffen worden.
38

Experimentelle Untersuchungen zur Reaktionsdynamik einfacher Kohlenwasserstoffsysteme

Mark, Stefan 14 January 1997 (has links)
In der vorliegenden Arbeit werden in einer Guided-Ion-Beam - Apparatur Ionen-Molekuel-Reaktionen einfacher Kohlenwasserstoffsysteme in der Gasphase untersucht. Dabei werden die Methoden zur Messung von differentiellen und integralen Querschnitten auf polyatomare Systeme uebertragen und insbesondere der Informationsgehalt differentieller Querschnitte fr komplexere, polyatomare Reaktionssysteme analysiert. Es werden Reaktionen zwischen dem Methyl-Kation (CH3+/CD3+) und den Neutralmolekuelen Methan, Ethan, Propan, Ethen und Propen untersucht. Fuer Stossenergien zwischen 0.1 eV und 7 eV werden absolute Ratenkoeffizienten der einzelnen Reaktionskanaele gemessen und aus der Analyse der Produktgeschwindigkeitsverteilungen eine Zuordnung zu grundlegenden Reaktionsmechanismen vorgenommen. Durch Vergleich der Einzelergebnisse zeigen sich grundlegende Gemeinsamkeiten, aber auch entscheidende Unterschiede in der Reaktionsdynamik kleiner Kohlenwasserstoffsysteme. Fuer die Reaktionen mit Alkanen wird ein umfassendes Reaktionsmodell diskutiert. Die apparative Erweiterung um einen 22-Pol-Zwischenspeicher erlaubt die Relaxation angeregter Primaerionen. An zwei Beispielen wird die Funktionsfaehigkeit demonstriert.
39

Biochemische und mechanistische Charakterisierung von Enzymen der Glycosidhydrolase-Familie 4 / Biochemical and mechanical characterization of glycosid-hydrolase-family 4 enzymes

Hoffmann, Volker 27 April 2005 (has links)
No description available.
40

Kinetik und molekulare Mechanismen des Plasmamembran-Glutamattransports

Mim, Carsten. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main). / Zsfassung in dt. und engl. Sprache.

Page generated in 0.9762 seconds