Spelling suggestions: "subject:"berechnen""
21 |
Treppenrechnen: (Förderung des relationalen Zahlbegriffs und des Teilmengenverständnisses)Reuter, Petra 17 September 2018 (has links)
No description available.
|
22 |
Arithmetische Grundlagen SPIELEnd fördernUniversität Leipzig 04 October 2018 (has links)
No description available.
|
23 |
Accurate and efficient numerical methods for nonlocal problemsZhao, Wei 14 May 2019 (has links)
In this thesis, we study several nonlocal models to obtain their numerical solutions accurately and efficiently. In contrast to the classical (local) partial
differential equation models, these nonlocal models are integro-differential equations that do not contain spatial derivatives. As a result, these nonlocal
models allow their solutions to have discontinuities. Hence, they can be widely used for fracture problems and anisotropic problems.
This thesis mainly includes two parts. The first part focuses on presenting accurate and efficient numerical methods. In this part, we first
introduce three meshless methods including two global schemes, namely the radial basis functions collocation method (RBFCM) and the radial ba-
sis functions-based pseudo-spectral method (RBF-PSM) and a localized scheme, namely the localized radial basis functions-based pseudo-spectral
method (LRBF-PSM), which also gives the development process of the RBF methods from global to local. The comparison of these methods
shows that LRBF-PSM not only avoids the Runge phenomenon but also has similar accuracy to the global scheme. Since the LRBF-PSM uses only
a small subset of points, the calculation consumes less CPU time. Afterwards, we improve this scheme by adding enrichment functions so that it
can be effectively applied to discontinuity problems. This thesis abbreviates this enriched method as LERBF-PSM (Localized enriched radial basis
functions-based pseudo-spectral method).
In the second part, we focus on applying the derived methods from the first part to nonlocal topics of current research, including nonlocal
diffusion models, linear peridynamic models, parabolic/hyperbolic nonlocal phase field models, and nonlocal nonlinear Schrödinger equations
arising in quantum mechanics. The first point worth noting is that in order to verify the meshless nature of LRBF-PSM, we apply this method to
solve a two-dimensional steady-state continuous peridynamic model in regular, irregular (L-shaped and Y-shaped) domains with uniform and non-uniform discretizations and even extend this method to three dimensions. It is also worth noting that before solving nonlinear nonlocal Schrödinger equations, according to the property of the convolution, these partial integro-differential equations are transformed into equivalent or approximate partial differential equations (PDEs) in the whole space and then the LRBF-PSM is used for the spatial discretization in a finite domain with suitable boundary conditions. Therefore, the solutions can be quickly approximated.
|
24 |
Moving from Diagnosis to Intervention in Numeracy - turning mathematical dreams into realityBooker, George 06 March 2012 (has links)
No description available.
|
25 |
Skript zum Kurs Einführung in das symbolische Rechnen Sommersemester 2021Gräbe, Hans-Gert 08 October 2021 (has links)
Das Skript zum Kurs Einführung in das symbolische Rechnen Sommersemester 2021 (Introduction to Symbolic Computing) gibt eine systematische Einführung in symbolische Methoden in der Mathematik, in die grundlegenden Algorithmen der Computeralgebra, die für Anwendungen in der Zahlentheorie, kommutativen Algebra und algebraischen Geometrie wichtig sind.:0 Einleitung 3
1 Computeralgebrasysteme im Einsatz 7
2 Aufbau und Arbeitsweise eines CAS der zweiten Generation 41
3 Das Simplifizieren von Ausdr ̈ucken 79
4 Algebraische Zahlen 114
5 Addendum: Die Stammfunktion einer rationalen Funktion 134
6 Addendum: Die Stellung des symbolischen Rechnens im Wissenschaftsgebäude 142
|
26 |
Organic electrochemical networks for biocompatible and implantable machine learning: Organic bioelectronic beyond sensingCucchi, Matteo 31 January 2022 (has links)
How can the brain be such a good computer? Part of the answer lies in the astonishing number of neurons and synapses that process electrical impulses in parallel. Part of it must be found in the ability of the nervous system to evolve in response to external stimuli and grow, sharpen, and depress synaptic connections. However, we are far from understanding even the basic mechanisms that allow us to think, be aware, recognize patterns, and imagine. The brain can do all this while consuming only around 20 Watts, out-competing any human-made processor in terms of energy-efficiency. This question is of particular interest in a historical era and technological stage where phrases like machine learning and artificial intelligence are more and more widespread, thanks to recent advances produced in the field of computer science. However, brain-inspired computation is today still relying on algorithms that run on traditional silicon-made, digital processors. Instead, the making of brain-like hardware, where the substrate itself can be used for computation and it can dynamically update its electrical pathways, is still challenging.
In this work, I tried to employ organic semiconductors that work in electrolytic solutions, called organic mixed ionic-electronic conductors (OMIECs) to build hardware capable of computation. Moreover, by exploiting an electropolymerization technique, I could form conducting connections in response to electrical spikes, in analogy to how synapses evolve when the neuron fires.
After demonstrating artificial synapses as a potential building block for neuromorphic chips, I shifted my attention to the implementation of such synapses in fully operational networks. In doing so, I borrowed the mathematical framework of a machine learning approach known as reservoir computing, which allows computation with random (neural) networks. I capitalized my work on demonstrating the possibility of using such networks in-vivo for the recognition and classification of dangerous and healthy heartbeats. This is the first demonstration of machine learning carried out in a biological environment with a biocompatible substrate. The implications of this technology are straightforward: a constant monitoring of biological signals and fluids accompanied by an active recognition of the presence of malign patterns may lead to a timely, targeted and early diagnosis of potentially mortal conditions.
Finally, in the attempt to simulate the random neural networks, I faced difficulties in the modeling of the devices with the state-of-the-art approach. Therefore, I tried to explore a new way to describe OMIECs and OMIECs-based devices, starting from thermodynamic axioms. The results of this model shine a light on the mechanism behind the operation of the organic electrochemical transistors, revealing the importance of the entropy of mixing and suggesting new pathways for device optimization for targeted applications.
|
27 |
Energie- und Ausführungszeitmodelle zur effizienten Ausführung wissenschaftlicher Simulationen / Energy and execution time models for an efficient execution of scientific simulationsLang, Jens 15 January 2015 (has links) (PDF)
Das wissenschaftliche Rechnen mit der Computersimulation hat sich heute als dritte Säule der wissenschaftlichen Methodenlehre neben der Theorie und dem Experiment etabliert. Aufgabe der Informatik im wissenschaftlichen Rechnen ist es, sowohl effiziente Simulationsalgorithmen zu entwickeln als auch ihre effiziente Implementierung.
Die vorliegende Arbeit richtet ihren Fokus auf die effiziente Implementierung zweier wichtiger Verfahren des wissenschaftlichen Rechnens: die Schnelle Multipolmethode (FMM) für Teilchensimulationen und die Methode der finiten Elemente (FEM), die z. B. zur Berechnung der Deformation von Festkörpern genutzt wird. Die Effizienz der Implementierung bezieht sich hier auf die Ausführungszeit der Simulationen und den zur Ausführung notwendigen Energieverbrauch der eingesetzten Rechnersysteme.
Die Steigerung der Effizienz wurde durch modellbasiertes Autotuning erreicht. Beim modellbasierten Autotuning wird für die wesentlichen Teile des Algorithmus ein Modell aufgestellt, das dessen Ausführungszeit bzw. Energieverbrauch beschreibt. Dieses Modell ist abhängig von Eigenschaften des genutzten Rechnersystems, von Eingabedaten und von verschiedenen Parametern des Algorithmus. Die Eigenschaften des Rechnersystems werden durch Ausführung des tatsächlich genutzten Codes für verschiedene Implementierungsvarianten ermittelt. Diese umfassen eine CPU-Implementierung und eine Grafikprozessoren-Implementierung für die FEM und die Implementierung der Nahfeld- und der Fernfeldwechselwirkungsberechnung für die FMM. Anhand der aufgestellten Modelle werden die Kosten der Ausführung für jede Variante vorhergesagt. Die optimalen Algorithmenparameter können somit analytisch bestimmt werden, um die gewünschte Zielgröße, also Ausführungszeit oder Energieverbrauch, zu minimieren. Bei der Ausführung der Simulation werden die effizientesten Implementierungsvarianten entsprechend der Vorhersage genutzt. Während bei der FMM die Performance-Messungen unabhängig von der Ausführung der Simulation durchgeführt werden, wird für die FEM ein Verfahren zur dynamischen Verteilung der Rechenlast zwischen CPU und GPU vorgestellt, das auf Ausführungszeitmessungen zur Laufzeit der Simulation reagiert. Durch Messung der tatsächlichen Ausführungszeiten kann so dynamisch auf sich während der Laufzeit verändernde Verhältnisse reagiert und die Verteilung der Rechenlast entsprechend angepasst werden.
Die Ergebnisse dieser Arbeit zeigen, dass modellbasiertes Autotuning es ermöglicht, die Effizienz von Anwendungen des wissenschaftlichen Rechnens in Bezug auf Ausführungszeit und Energieverbrauch zu steigern. Insbesondere die Berücksichtigung des Energieverbrauchs alternativer Ausführungspfade, also die Energieadaptivität, wird in naher Zukunft von großer Bedeutung im wissenschaftlichen Rechnen sein. / Computer simulation as a part of the scientific computing has established as third pillar in scientific methodology, besides theory and experiment. The task of computer science in the field of scientific computing is the development of efficient simulation algorithms as well as their efficient implementation.
The thesis focuses on the efficient implementation of two important methods in scientific computing: the Fast Multipole Method (FMM) for particle simulations, and the Finite Element Method (FEM), which is, e.g., used for deformation problems of solids. The efficiency of the implementation considers the execution time of the simulations and the energy consumption of the computing systems needed for the execution.
The method used for increasing the efficiency is model-based autotuning. For model-based autotuning, a model for the substantial parts of the algorithm is set up which estimates the execution time or energy consumption. This model depends on properties of the computer used, of the input data and of parameters of the algorithm. The properties of the computer are determined by executing the real code for different implementation variants. These implementation variantss comprise a CPU and a graphics processor implementation for the FEM, and implementations of near field and far field interaction calculations for the FMM. Using the models, the execution costs for each variant are predicted. Thus, the optimal algorithm parameters can be determined analytically for a minimisation of the desired target value, i.e. execution time or energy consumption. When the simulation is executed, the most efficient implementation variants are used depending on the prediction of the model. While for the FMM the performance measurement takes place independently from the execution of the simulation, for the FEM a method for dynamically distributing the workload to the CPU and the GPU is presented, which takes into account execution times measured at runtime. By measuring the real execution times, it is possible to response to changing conditions and to adapt the distribution of the workload accordingly.
The results of the thesis show that model-based autotuning makes it possible to increase the efficiency of applications in scientific computing regarding execution time and energy consumption. Especially, the consideration of the energy consumption of alternative execution paths, i.e. the energy adaptivity, will be of great importance in scientific computing in the near future.
|
28 |
Energie- und Ausführungszeitmodelle zur effizienten Ausführung wissenschaftlicher SimulationenLang, Jens 09 December 2014 (has links)
Das wissenschaftliche Rechnen mit der Computersimulation hat sich heute als dritte Säule der wissenschaftlichen Methodenlehre neben der Theorie und dem Experiment etabliert. Aufgabe der Informatik im wissenschaftlichen Rechnen ist es, sowohl effiziente Simulationsalgorithmen zu entwickeln als auch ihre effiziente Implementierung.
Die vorliegende Arbeit richtet ihren Fokus auf die effiziente Implementierung zweier wichtiger Verfahren des wissenschaftlichen Rechnens: die Schnelle Multipolmethode (FMM) für Teilchensimulationen und die Methode der finiten Elemente (FEM), die z. B. zur Berechnung der Deformation von Festkörpern genutzt wird. Die Effizienz der Implementierung bezieht sich hier auf die Ausführungszeit der Simulationen und den zur Ausführung notwendigen Energieverbrauch der eingesetzten Rechnersysteme.
Die Steigerung der Effizienz wurde durch modellbasiertes Autotuning erreicht. Beim modellbasierten Autotuning wird für die wesentlichen Teile des Algorithmus ein Modell aufgestellt, das dessen Ausführungszeit bzw. Energieverbrauch beschreibt. Dieses Modell ist abhängig von Eigenschaften des genutzten Rechnersystems, von Eingabedaten und von verschiedenen Parametern des Algorithmus. Die Eigenschaften des Rechnersystems werden durch Ausführung des tatsächlich genutzten Codes für verschiedene Implementierungsvarianten ermittelt. Diese umfassen eine CPU-Implementierung und eine Grafikprozessoren-Implementierung für die FEM und die Implementierung der Nahfeld- und der Fernfeldwechselwirkungsberechnung für die FMM. Anhand der aufgestellten Modelle werden die Kosten der Ausführung für jede Variante vorhergesagt. Die optimalen Algorithmenparameter können somit analytisch bestimmt werden, um die gewünschte Zielgröße, also Ausführungszeit oder Energieverbrauch, zu minimieren. Bei der Ausführung der Simulation werden die effizientesten Implementierungsvarianten entsprechend der Vorhersage genutzt. Während bei der FMM die Performance-Messungen unabhängig von der Ausführung der Simulation durchgeführt werden, wird für die FEM ein Verfahren zur dynamischen Verteilung der Rechenlast zwischen CPU und GPU vorgestellt, das auf Ausführungszeitmessungen zur Laufzeit der Simulation reagiert. Durch Messung der tatsächlichen Ausführungszeiten kann so dynamisch auf sich während der Laufzeit verändernde Verhältnisse reagiert und die Verteilung der Rechenlast entsprechend angepasst werden.
Die Ergebnisse dieser Arbeit zeigen, dass modellbasiertes Autotuning es ermöglicht, die Effizienz von Anwendungen des wissenschaftlichen Rechnens in Bezug auf Ausführungszeit und Energieverbrauch zu steigern. Insbesondere die Berücksichtigung des Energieverbrauchs alternativer Ausführungspfade, also die Energieadaptivität, wird in naher Zukunft von großer Bedeutung im wissenschaftlichen Rechnen sein. / Computer simulation as a part of the scientific computing has established as third pillar in scientific methodology, besides theory and experiment. The task of computer science in the field of scientific computing is the development of efficient simulation algorithms as well as their efficient implementation.
The thesis focuses on the efficient implementation of two important methods in scientific computing: the Fast Multipole Method (FMM) for particle simulations, and the Finite Element Method (FEM), which is, e.g., used for deformation problems of solids. The efficiency of the implementation considers the execution time of the simulations and the energy consumption of the computing systems needed for the execution.
The method used for increasing the efficiency is model-based autotuning. For model-based autotuning, a model for the substantial parts of the algorithm is set up which estimates the execution time or energy consumption. This model depends on properties of the computer used, of the input data and of parameters of the algorithm. The properties of the computer are determined by executing the real code for different implementation variants. These implementation variantss comprise a CPU and a graphics processor implementation for the FEM, and implementations of near field and far field interaction calculations for the FMM. Using the models, the execution costs for each variant are predicted. Thus, the optimal algorithm parameters can be determined analytically for a minimisation of the desired target value, i.e. execution time or energy consumption. When the simulation is executed, the most efficient implementation variants are used depending on the prediction of the model. While for the FMM the performance measurement takes place independently from the execution of the simulation, for the FEM a method for dynamically distributing the workload to the CPU and the GPU is presented, which takes into account execution times measured at runtime. By measuring the real execution times, it is possible to response to changing conditions and to adapt the distribution of the workload accordingly.
The results of the thesis show that model-based autotuning makes it possible to increase the efficiency of applications in scientific computing regarding execution time and energy consumption. Especially, the consideration of the energy consumption of alternative execution paths, i.e. the energy adaptivity, will be of great importance in scientific computing in the near future.
|
29 |
Proceedings of the 4th Many-core Applications Research Community (MARC) SymposiumJanuary 2012 (has links)
In continuation of a successful series of events, the 4th Many-core Applications Research Community (MARC) symposium took place at the HPI in Potsdam on December 8th and 9th 2011. Over 60 researchers from different fields presented their work on many-core hardware architectures, their programming models, and the resulting research questions for the upcoming generation of heterogeneous parallel systems.
|
30 |
From Algorithmic Computing to Autonomic Computing13 February 2018 (has links) (PDF)
In algorithmic computing, the program follows a predefined set of rules – the algorithm. The analyst/designer of the program analyzes the intended tasks of the program, defines the rules for its expected behaviour and programs the implementation. The creators of algorithmic software must therefore foresee, identify and implement all possible cases for its behaviour in the future application!
However, what if the problem is not fully defined? Or the environment is uncertain? What if situations are too complex to be predicted? Or the environment is changing dynamically? In many such cases algorithmic computing fails.
In such situations, the software needs an additional degree of freedom: Autonomy! Autonomy allows software to adapt to partially defined problems, to uncertain or dynamically changing environments and to situations that are too complex to be predicted. As more and more applications – such as autonomous cars and planes, adaptive power grid management, survivable networks, and many more – fall into this category, a gradual switch from algorithmic computing to autonomic computing takes place.
Autonomic computing has become an important software engineering discipline with a rich literature, an active research community, and a growing number of applications.
|
Page generated in 0.0846 seconds