211 |
Review of magnetic bead surface markers for stem cell separation : Literature study for MAGic BioprocessingHolmberg, Gustav, Svensson, Adrian, Bergström, Erik, Westerberg, Leo, Wijitchakhorn, Watthachak January 2022 (has links)
Stem cell therapy and transplantation is a quickly evolving field with many clinical applications. However, several problems need to be overcome before they can be applied on an allogenic scale, and among them is ensuring of the purity of the applied differentiated stem cell culture. Separation using magnetic beads which attach to the wanted cells has proven to be an effective and easy method to separate them from a sample. An important factor with the method is the choice of specific surface antigens on the beads which determines how well the beads are attached to the cell. This report will provide some fact of the immunotherapy and some of the most important stem cells and their differentiation to an active cell. It will be elucidated which cytokines are important for differentiation, and current clinical studies in the immunotherapeutic field of stem cells and their useful surface antigens. Furthermore, regenerative medicine using stem cells will be covered. A brief overview mesenchymal and induced pluripotent stem cells, their biological markers, and their various uses. Specific projects using regenerative medicine will be described and an overview of ever-expanding market for regenerative medicine will also be included.
|
212 |
La mise en marché des produits issus du génie tissulaire: Une question de catégorisation?Benoit, Stéphanie 08 1900 (has links)
Le génie tissulaire est un domaine interdisciplinaire qui applique les principes du génie et des sciences de la vie (notamment la science des cellules souches) dans le but de régénérer et réparer les tissus et organes lésés. En d'autres mots, plutôt que de remplacer les tissus et les organes, on les répare. La recherche en génie tissulaire est considérable et les ambitions sont grandes, notamment celle de mettre fm aux listes d'attente de dons d'organes. Le génie tissulaire a déjà commencé à livrer des produits thérapeutiques pour des applications simples, notamment la peau et le cartilage. Les questions sur la façon de réglementer les produits thérapeutiques qui sont issus du génie tissulaire sont soulevées à chaque nouveau produit. À ce jour, ces questions ont reçu peu d'attention comparativement aux questions éthiques associées aux recherches avec les cellules souches et les risques qu'engendrent les produits biologiques. Il est donc important d'examiner si le cadre normatif qui entoure la mise en marché des produits issus du génie tissulaire est approprié puisque de tels produits sont déjà disponibles sur le marché et plusieurs autres sont en voie de l'être. Notre analyse révèle que le cadre canadien actuel n'est pas approprié et le moment d'une reforme est arrivé. Les États-Unis et l'Union européenne ont chacun des approches particulières qui sont instructives. Nous avons entrepris une revue des textes réglementaires qui encadrent la mise en marché des produits issus du génie tissulaire au Canada, aux États-Unis et dans l'Union européenne et formulons quelques suggestions de réforme. / Tissue engineering is an interdisciplinary field that applies the principles of engineering and the life sciences (including the science of stem cells) toward the development of biological substitutes that restore, maintain or improve tissue function. In other words, rather than being replaced, tissues and organs are repaired. Research in tissue engineering is important and ambitions are high, such as ending the waiting list for organ transplant.
Tissue engineering has already started delivering therapeutic products for simple applications such as skin and cartilage. Questions on the way tissue engineered therapeutic products are regulated are raised with each new product. Until now, these questions have been given little attention compared to the ethical issues related to stem cell research and to the risks generated by biologics. It is therefore important to examine whether the regulatory framework is suitable since some tissue engineered products are already available on the market and others are soon to be marketed. Our analysis reveals that the Canadian regulatory framework is not suitable and the time is ripe for reform.
The United States and the European Union have their own approaches that are instructive. We have undertaken a study of the regulatory premarket approval frameworks in Canada, United States and the European Union, and formulated suggestions for reform.
|
213 |
La mise en marché des produits issus du génie tissulaire: Une question de catégorisation?Benoit, Stéphanie 08 1900 (has links)
Le génie tissulaire est un domaine interdisciplinaire qui applique les principes du génie et des sciences de la vie (notamment la science des cellules souches) dans le but de régénérer et réparer les tissus et organes lésés. En d'autres mots, plutôt que de remplacer les tissus et les organes, on les répare. La recherche en génie tissulaire est considérable et les ambitions sont grandes, notamment celle de mettre fm aux listes d'attente de dons d'organes. Le génie tissulaire a déjà commencé à livrer des produits thérapeutiques pour des applications simples, notamment la peau et le cartilage. Les questions sur la façon de réglementer les produits thérapeutiques qui sont issus du génie tissulaire sont soulevées à chaque nouveau produit. À ce jour, ces questions ont reçu peu d'attention comparativement aux questions éthiques associées aux recherches avec les cellules souches et les risques qu'engendrent les produits biologiques. Il est donc important d'examiner si le cadre normatif qui entoure la mise en marché des produits issus du génie tissulaire est approprié puisque de tels produits sont déjà disponibles sur le marché et plusieurs autres sont en voie de l'être. Notre analyse révèle que le cadre canadien actuel n'est pas approprié et le moment d'une reforme est arrivé. Les États-Unis et l'Union européenne ont chacun des approches particulières qui sont instructives. Nous avons entrepris une revue des textes réglementaires qui encadrent la mise en marché des produits issus du génie tissulaire au Canada, aux États-Unis et dans l'Union européenne et formulons quelques suggestions de réforme. / Tissue engineering is an interdisciplinary field that applies the principles of engineering and the life sciences (including the science of stem cells) toward the development of biological substitutes that restore, maintain or improve tissue function. In other words, rather than being replaced, tissues and organs are repaired. Research in tissue engineering is important and ambitions are high, such as ending the waiting list for organ transplant.
Tissue engineering has already started delivering therapeutic products for simple applications such as skin and cartilage. Questions on the way tissue engineered therapeutic products are regulated are raised with each new product. Until now, these questions have been given little attention compared to the ethical issues related to stem cell research and to the risks generated by biologics. It is therefore important to examine whether the regulatory framework is suitable since some tissue engineered products are already available on the market and others are soon to be marketed. Our analysis reveals that the Canadian regulatory framework is not suitable and the time is ripe for reform.
The United States and the European Union have their own approaches that are instructive. We have undertaken a study of the regulatory premarket approval frameworks in Canada, United States and the European Union, and formulated suggestions for reform.
|
214 |
Differentiation and characterization of cell types associated with retinal degenerative diseases using human induced pluripotent stem cellsGupta, Manav 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human induced pluripotent stem (iPS) cells have the unique ability to differentiate into 200 or so somatic cell types that make up the adult human being. The use of human iPS cells to study development and disease is a highly exciting and interdependent field that holds great promise in understanding and elucidating mechanisms behind cellular differentiation with future applications in drug screening and cell replacement studies for complex and currently incurable cellular degenerative disorders. The recent advent of iPS cell technology allows for the generation of patient-specific cell lines that enable us to model the progression of a disease phenotype in a human in vitro model. Differentiation of iPS cells toward the affected cell type provides an unlimited source of diseased cells for examination, and to further study the developmental progression of the disease in vitro, also called the “disease-in-a-dish” model.
In this study, efforts were undertaken to recapitulate the differentiation of distinct retinal cell affected in two highly prevalent retinal diseases, Usher syndrome and glaucoma. Using a line of Type III Usher Syndrome patient derived iPS cells efforts were undertaken to develop such an approach as an effective in vitro model for studies of Usher Syndrome, the most commonly inherited disorder affecting both vision and hearing. Using existing lines of iPS cells, studies
were also aimed at differentiation and characterization of the more complex retinal cell types, retinal ganglion cells (RGCs) and astrocytes, the cell types affected in glaucoma, a severe neurodegenerative disease of the retina leading to eventual irreversible blindness.
Using a previously described protocol, the iPS cells were directed to differentiate toward a retinal fate through a step-wise process that proceeds through all of the major stages of neuroretinal development. The differentiation process was monitored for a period of 70 days for the differentiation of retinal cell types and 150 days for astrocyte development. The different stages of differentiation and the individually derived somatic cell types were characterized by the expression of developmentally associated transcription factors specific to each cell type. Further approaches were undertaken to characterize the morphological differences between RGCs and other neuroretinal cell types derived in the process.
The results of this study successfully demonstrated that Usher syndrome patient derived iPS cells differentiated to the affected photoreceptors of Usher syndrome along with other mature retinal cell types, chronologically analogous to the development of the cell types in a mature human retina. This study also established a robust method for the in vitro derivation of RGCs and astrocytes from human iPS cells and provided novel methodologies and evidence to characterize these individual somatic cell types.
Overall, this study provides a unique insight into the application of human pluripotent stem cell biology by establishing a novel platform for future studies of in vitro disease modeling of the retinal degenerative diseases: Usher syndrome and glaucoma. In downstream applications of this study, the disease relevant cell types derived from human iPS cells can be used as tools to further study disease progression, drug screening and cell replacement strategies.
|
215 |
Reduced Burst Release of Bioactive rhBMP-2 from a Three-phase Composite ScaffoldGrant, David William 31 December 2010 (has links)
Recombinant human bone morphogenic proteins (rhBMPs) are extensively studied and employed clinically for treatment of various bone defects. Current clinical delivery vehicles suffer wasteful burst releases that mandate supra-physiological dosing driving concerns over safety and cost. It was therefore investigated whether a unique drug delivery vehicle sequestered within a composite scaffold could lower the burst release of rhBMP-2. PLGA-calcium phosphate tri-phasic composite scaffolds delivered model protein BSA with burst release of ~13% and sustained kinetics of 0.5-1.5% BSA/day up to 45 days. rhBMP-2 was delivered with zero burst release however at much lower levels, totaling 0.09% to 0.9 % release over 10 days, but had up to 6.3-fold greater bioactivity than fresh rhBMP-2 (p<0.05). In conclusion, the three-phase composite scaffold can deliver bioactive proteins with a reduced burst release and sustained secondary kinetics.
|
216 |
Reduced Burst Release of Bioactive rhBMP-2 from a Three-phase Composite ScaffoldGrant, David William 31 December 2010 (has links)
Recombinant human bone morphogenic proteins (rhBMPs) are extensively studied and employed clinically for treatment of various bone defects. Current clinical delivery vehicles suffer wasteful burst releases that mandate supra-physiological dosing driving concerns over safety and cost. It was therefore investigated whether a unique drug delivery vehicle sequestered within a composite scaffold could lower the burst release of rhBMP-2. PLGA-calcium phosphate tri-phasic composite scaffolds delivered model protein BSA with burst release of ~13% and sustained kinetics of 0.5-1.5% BSA/day up to 45 days. rhBMP-2 was delivered with zero burst release however at much lower levels, totaling 0.09% to 0.9 % release over 10 days, but had up to 6.3-fold greater bioactivity than fresh rhBMP-2 (p<0.05). In conclusion, the three-phase composite scaffold can deliver bioactive proteins with a reduced burst release and sustained secondary kinetics.
|
217 |
TARGETED DELIVERY OF BONE ANABOLICS TO BONE FRACTURES FOR ACCELERATED HEALINGJeffery J H Nielsen (8787002) 21 June 2022 (has links)
<div>Delayed fracture healing is a major health issue involved with aging. Therefore, strategies to improve the pace of repair and prevent non-union are needed in order to improve patient outcomes and lower healthcare costs. In order to accelerate bone fracture healing noninvasively, we sought to develop a drug delivery system that could safely and effectively be used to deliver therapeutics to the site of a bone fracture. We elected to pursue the promising strategy of using small-molecule drug conjugates that deliver therapeutics to bone in an attempt to increase the efficacy and safety of drugs for treating bone-related diseases.</div><div>This strategy also opened the door for new methods of administering drugs. Traditionally, administering bone anabolic agents to treat bone fractures has relied entirely on local surgical application. However, because it is so invasive, this method’s use and development has been limited. By conjugating bone anabolic agents to bone-homing molecules, bone fracture treatment can be performed through minimally invasive subcutaneous administration. The exposure of raw hydroxyapatite that occurs with a bone fracture allows these high-affinity molecules to chelate the calcium component of hydroxyapatite and localize primarily to the fracture site.</div><div>Many bone-homing molecules (such as bisphosphonates and tetracycline targeting) have been developed to treat osteoporosis. However, many of these molecules have toxicity associated with them. We have found that short oligopeptides of acidic amino acids can localize to bone fractures with high selectivity and with very low toxicity compared to bisphosphonates and tetracyclines.</div><div>We have also demonstrated that these molecules can be used to target peptides of all chemical classes: hydrophobic, neutral, cationic, anionic, short, and long. This ability is particularly useful because many bone anabolics are peptidic in nature. We have found that acidic oligopeptides have better persistence at the site of the fracture than bisphosphonate-targeted therapeutics. This method allows for a systemic administration of bone anabolics to treat bone fractures, which it achieves by accumulating the bone anabolic at the fracture site. It also opens the door for a new way of treating the prevalent afflictions of broken bones and the deaths associated with them.</div><div>We further developed this technology by using it to deliver anabolic peptides derived from growth factors, angiogenic agents, neuropeptides, and extracellular matrix fragments. We found several promising therapeutics that accelerated the healing of bone fractures by improving the mineralization of the callus and improving the overall strength. We optimized the performance of these molecules by improving their stability, targeting ligands, linkers, dose, and dosing frequency.</div><div>We also found that these therapeutics could be used to accelerate bone fracture repair even in the presence of severe comorbidities (such as diabetes and osteoporosis) that typically slow the repair process. We found that, unlike the currently approved therapeutic for fracture healing (BMP2), our therapeutics improved functionality and reduced pain in addition to strengthening the bone. These optimized targeted bone anabolics were not only effective at healing bone fractures but they also demonstrated that they could be used to speed up spinal fusion. Additionally, we demonstrated that acidic oligopeptides have potential to be used to treat other bone diseases with damaged bone.</div><div>With these targeted therapeutics, we no longer have to limit bone fracture healing to casts or invasive surgeries. Rather, we can apply these promising therapeutics that can be administered non-invasively to augment existing orthopedic practices. As these therapeutics move into clinical development, we anticipate that they will be able to reduce the immobilization time that is the source of so many of the deadly complications associated with bone fracture healing, particularly in the elderly.</div>
|
Page generated in 0.1366 seconds