Spelling suggestions: "subject:"bürgermeister"" "subject:"baumeister""
1 |
Torção de Reidemeister das formas espaciais esféricas / Reidemeister torsion of spherical space formsMelo, Thiago de 17 March 2009 (has links)
Neste trabalho, estudamos a ação dos grupos dos quatérnios generalizados \'Q IND.4t\', nas esferas, com o objetivo de calcularmos a torção de Reidemeister dos espaços quocientes, chamados de Formas Espaciais Esféricas Quaterniônicas. Calculamos a torção de Ray-Singer das esferas, dos espaços lenticulares e do cone sobre as esferas, este último fornecendo o caso particular do disco, usando a base para a homologia definida em [27]. Para as variedades fechadas, obtivemos a torção analítica por meio do Teorema de Cheeger-Müller [7, 22], e para o disco, por meio de uma fórmula provada por Brüning e Ma em [5] / In this work, we study the action of the generalized quaternionic groups \'Q IND.4t\' on the spheres to compute the Reidemeister torsion of the quotient spaces, which are called Quaternionic Spherical Space Forms. Using the base of the homology defined by Ray and Singer in [27] we compute also the Ray-Singer torsion of the spheres, lens spaces and the cone over the spheres. This last one provides the disc as a particular case. For the closed manifolds we obtain the analytic torsion using the Cheeger-Müller Theorem [7, 22] and for the disc using a formula proved by Brüning and Ma in [5]
|
2 |
Torção de Reidemeister das formas espaciais esféricas / Reidemeister torsion of spherical space formsThiago de Melo 17 March 2009 (has links)
Neste trabalho, estudamos a ação dos grupos dos quatérnios generalizados \'Q IND.4t\', nas esferas, com o objetivo de calcularmos a torção de Reidemeister dos espaços quocientes, chamados de Formas Espaciais Esféricas Quaterniônicas. Calculamos a torção de Ray-Singer das esferas, dos espaços lenticulares e do cone sobre as esferas, este último fornecendo o caso particular do disco, usando a base para a homologia definida em [27]. Para as variedades fechadas, obtivemos a torção analítica por meio do Teorema de Cheeger-Müller [7, 22], e para o disco, por meio de uma fórmula provada por Brüning e Ma em [5] / In this work, we study the action of the generalized quaternionic groups \'Q IND.4t\' on the spheres to compute the Reidemeister torsion of the quotient spaces, which are called Quaternionic Spherical Space Forms. Using the base of the homology defined by Ray and Singer in [27] we compute also the Ray-Singer torsion of the spheres, lens spaces and the cone over the spheres. This last one provides the disc as a particular case. For the closed manifolds we obtain the analytic torsion using the Cheeger-Müller Theorem [7, 22] and for the disc using a formula proved by Brüning and Ma in [5]
|
3 |
Deformabilidade sobre S^1 a livre de ponto fixo para auto-aplicações de T-fibrados e Reidemeister sobre S^1 / Deformability over S^1 of self-maps of T-bundles into a fixed point free map and Reidemeister over S^1Prado, Gustavo de Lima 25 March 2010 (has links)
Classificação das auto-aplicações de fibrados, com fibra toro, que preservam fibra sobre o círculo, com a propriedade de poderem ser deformadas sobre o círculo a uma aplicação livre de ponto fixo. Ainda, investigamos a relação entre o número de Reidemeister sobre o círculo e a propriedade acima / Classification of all fiber-preserving self-maps of torus bundles over the circle by the property of being able to deform them over the circle into a fixed point free map by a fiberwise homotopy over the circle. We also investigate the relationship between Reidemeister number over the circle and the property above
|
4 |
Deformabilidade sobre S^1 a livre de ponto fixo para auto-aplicações de T-fibrados e Reidemeister sobre S^1 / Deformability over S^1 of self-maps of T-bundles into a fixed point free map and Reidemeister over S^1Gustavo de Lima Prado 25 March 2010 (has links)
Classificação das auto-aplicações de fibrados, com fibra toro, que preservam fibra sobre o círculo, com a propriedade de poderem ser deformadas sobre o círculo a uma aplicação livre de ponto fixo. Ainda, investigamos a relação entre o número de Reidemeister sobre o círculo e a propriedade acima / Classification of all fiber-preserving self-maps of torus bundles over the circle by the property of being able to deform them over the circle into a fixed point free map by a fiberwise homotopy over the circle. We also investigate the relationship between Reidemeister number over the circle and the property above
|
5 |
Teoria de Nielsen de raizes para aplicações equivariantes / Nielsen root rheory for equivariant mappingsSantos, Hildebrane Augusto dos 19 February 2009 (has links)
Este trabalho consiste de duas partes. Na primeira, desenvolvemos uma teoria de Nielsen equivariante para raizes de G-aplicações $f:X\\to Y$ equivariantes entre G-espaços topológicos Hausdorff, conexos, normais, localmente conexos por caminhos e semilocalmente simplesmente conexos, onde G é um grupo topológico, Na segunda parte, estudamos a questão da realização do G-número de Nielsen de raizes quando este é zero. / This work consists of two parts. In the firs one, we develop an equivariant Nielsen root theory for G-maps. We consider equivariant maps $f:X\\to Y$ between Hausdorff, connected, normal, locally path connected and semilocally simply connected G-spaces, where G is a topological group. In the second part, we study the question of the realization of G-Nielsen root number when it is zero.
|
6 |
Teoria de Nielsen de raizes para aplicações equivariantes / Nielsen root rheory for equivariant mappingsHildebrane Augusto dos Santos 19 February 2009 (has links)
Este trabalho consiste de duas partes. Na primeira, desenvolvemos uma teoria de Nielsen equivariante para raizes de G-aplicações $f:X\\to Y$ equivariantes entre G-espaços topológicos Hausdorff, conexos, normais, localmente conexos por caminhos e semilocalmente simplesmente conexos, onde G é um grupo topológico, Na segunda parte, estudamos a questão da realização do G-número de Nielsen de raizes quando este é zero. / This work consists of two parts. In the firs one, we develop an equivariant Nielsen root theory for G-maps. We consider equivariant maps $f:X\\to Y$ between Hausdorff, connected, normal, locally path connected and semilocally simply connected G-spaces, where G is a topological group. In the second part, we study the question of the realization of G-Nielsen root number when it is zero.
|
7 |
Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space formsFemina, Ligia Laís 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
|
8 |
Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space formsLigia Laís Femina 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
|
9 |
Raízes de aplicações de complexos 2-dimensionais em superfícies fechadas / Roots of maps from 2-dimensional complexes into closed surfacesFenille, Marcio Colombo 01 February 2010 (has links)
Este texto é resultado de um estudo detalhado da teoria topológica de raízes para aplicações de complexos CW 2-dimensionais em superfícies fechadas (compactas e sem bordo). Diversas abordagens dos problemas envolvidos nesta teoria são apresentadas, algumas inclusive bastante diferenciadas com respeito aos parâmetros da teoria clássica / This text is the result of a detailed study of the topological root theory for maps from 2-dimensional CW complex into closed surfaces (compact and without boundary surfaces). Several approaches to the problems involved in this theory are presented, some of which are quite different with respect to the parameters of the classical theory
|
10 |
Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais / Cellular decomposition and Reidemeister torsion for tetrahedral spherical space formsGalves, Ana Paula Tremura 14 February 2013 (has links)
Dada uma ação isométrica livre do grupo binário tetraedral G sobre esferas de dimensão ímpar, obtemos uma decomposição celular finita explícita para as formas espaciais esféricas tetraedrais, fazendo uso do conceito de região (ou domínio) fundamental. A estrutura celular deixa explícita uma descrição do complexo de cadeias sobre o grupo G. Como aplicações, utilizamos o complexo de cadeias e a interpretação geométrica do produto cup para calcular o anel de cohomologia da forma espacial esférica tetraedral em dimensão três, e também calculamos a torção de Reidemeister destes espaços para uma determinada representação de G / Given a free isometric action of a binary tetrahedral group G on odd dimensional spheres, we obtain an explicit finite cellular decomposition of the tetrahedral spherical space forms, using the concept of fundamental domain. The cellular structure gives an explicit description of the associated cellular chain complex over the group G. As applications we use the chain complex and the geometric interpretation of the cup product to calculate the cohomology ring of the tetrahedral spherical space form in three dimension, and also compute the Reidemeister torsion of these spaces for a determined representation of G
|
Page generated in 0.1372 seconds