• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and development of Thyristor based MLCR CSC

Das, Bhaba Priyo January 2014 (has links)
The new concept of Multi-Level Current Reinjection (MLCR) combines the advantages of DC ripple reinjection, multi-level conversion and soft-switching technique. Taking advantage of the soft-switching technique which uses zero current switching for the main bridge switches, thyristor based MLCR current source converter (CSC) is proposed. This concept adds self-commutation capability to thyristors and produces high quality line current waveforms. Various thyristor based MLCR CSC topologies have been simulated extensively using PSCAD/EMTDC in this thesis and their performance characteristics investigated. Questions have been raised about the ability to force the main thyristors off using the reinjection bridge in a real-world implementation, where there are inevitable stray capacitances and inductances which may influence the thyristor turn-off; and simulation switching models may not represent the switching characteristics fully or accurately. For this proof of concept, a small scale prototype has been built in the laboratory. The 3-level MLCR CSC, which increases the pulse number from 12 to 24, is chosen to verify the concept. The experimental investigation of the 3-level MLCR CSC, under steady-state conditions, verified the following: • The reinjection current allows the main bridge thyristors to be switched at negative firing angles. • This current reinjection technique allows self-commutation capability in a practical system despite the finite turn-off times of the thyristor. • This current reinjection technique improves the harmonic characteristics of the thyristor based converter. • It is observed that the deviation of the actual waveforms from the theoretical waveforms is mainly due to the snubber across the reinjection switch, and a trade-off in the choice of snubber components is required.
2

Current Status and Future Outlook of Geothermal Reinjection: A Review of the Ongoing Debate

Skog, Gabriella January 2019 (has links)
Geothermal energy is a renewable energy source which has not yet had the same breakthrough as other renewables, e.g. solar PV and wind. There may still be some technical issues to be solved before geothermal can reach its full potential.One of these technical challenges concerns reinjection, i.e. the return of geothermal fluids back into the ground after surface energy extraction. In traditional geothermal energy utilization, hot geothermal fluid is brought up from underground reservoirs to the surface. Depending on the design of the power plant, the fluid can either be kept one-phased or get separated into two phases, i.e. hot steam and water. Hot steam, or vapor of another working fluid, is used to drive electricity generating turbines. Whether the condensate is returned back into to the ground after energy extraction, i.e. reinjected, is nowadays usually a matter of how rather than if. However, the magnitude and strategy varies in countries as well as for specific power plant operators.From a sustainable management perspective, the majority of operators as well as scientist agree that reinjection is the best way practice in order to take care of a resource and leave the smallest possible environmental footprint. However, it is a quite complicated and not always problem free operation. There are numerous examples where reinjection has led to complications such as scaling, induced seismicity and cooling of the reservoir. The purpose of this study was to describe the current status of geothermal reinjection from a neutral third-party perspective, e.g. by describing current obstacles and negative as well as positive outcomes. The aim is to conclude whether current technology is enough to successfully reinject, or if there are still some gaps of knowledge to fill. The method consists partly of a literature study of previously written technical reports but also of interviews with experts in the area. In addition, the study summarizes the legal framework regarding reinjection in some geothermal active countries, e.g. if it is required by law or not. Although currently technology is enough to do a fairly good job at reinjecting geothermal fluids, the result of the study also shows that there are still some technical barriers to overcome in order to fully optimize it. However, it remains the best currently known way to keep geothermal energy sustainable. Better technologies will be needed in order for geothermal to reach its fully green potential.
3

Numerical Modeling Of Edremit Geothermal Field

Gunay, Emre 01 September 2012 (has links) (PDF)
The purpose of this study is to examine the geothermal potential, sustainability, and reinjection possibility of Edremit geothermal field. In order to investigate this, a numerical model consisting of a hot and cold water aquifer system is established. A two dimensional cross sectional model is set to simulate this geothermal system. Different pressure and temperature values are applied to the nodes at the boundaries to perform a steady state calibration which minimizes the computed results and observed values obtained from the near well logs. After the calibration, three alternative scenarios are proposed and the response of the pressure and temperature to these conditions is evaluated. At first the water is pumped from the wells of Yagci, Derman, Entur and ED-3 seperately at a mass rate of 5 kg/s and energy rate of 4.182 x 105 J/s. Then, in scenario 2 the water is pumped at the same rate from all the wells mentioned in the first scenario together. For the third scenario another well is opened to the geothermal system and 80% of the pumped water (temperature being 200C) is injected to the system from the wells while all the wells mentioned are working. The results of these scenarios are utilized to evaluate the reservoir in terms of its response to different production and reinjection conditions. Interpretation of the reservoir response in view of the pressure and temperature declines emphasize that such a simulation study can be applied to assess potential and sustainability of the geothermal systems.
4

Multi Level Reinjection ac/dc Converters for HVDC

Perera, Lasantha Bernard January 2006 (has links)
A new concept, the multi level voltage/current reinjection ac/dc conversion, is described in this thesis. Novel voltage and current source converter configurations, based on voltage and current reinjection concepts are proposed. These converter configurations are thoroughly analyzed in their ac and dc system sides. The fundamentals of the reinjection concept is discussed briefly, which lead to the derivation of the ideal reinjection waveform for complete harmonic cancellation and approximations for practical implementation. The concept of multi level voltage reinjection VSC is demonstrated through two types of configurations, based on standard 12-pulse parallel and series connected VSC modified with reinjection bridges and transformers. Firing control strategies and steady state waveform analysis are presented and verified by EMTDC simulations. The multi level current reinjection CSC is also described using two configurations based on standard 12-pulse parallel and series connected CSC modified with associated reinjection circuitry. Firing control strategies and steady state waveform analysis are presented and verified by EMTDC simulations. Taking the advantage of zero current switching in the main bridge valves, achieved through multi level current reinjection, an advanced multi level current reinjection scheme, consisting thyristor main bridges and self-commutated reinjection circuitry is proposed. This hybrid scheme effectively incorporates self-commutated capability into a conventional thyristor converter. The ability of the main bridge valves to commutate without the assistance of a turn-off pulse or line commutating voltage under the zero current condition is explained and verified by EMTDC simulations. Finally, the applications of the MLCR-CSC are discussed in terms of a back to back HVDC link and a long distance HVDC transmission system. The power and control structures and closed loop control strategies are presented. Dynamic simulation is carried out on PSCAD/EMTDC to demonstrate the two systems ability to respond to varying active and reactive power operating conditions.
5

Flow Paths in the Húsmúli Reinjection Zone, Iceland / Flödesvägar i Húsmúli-återinjektionszonen, Island

Tómasdóttir, Sigrún January 2018 (has links)
Reinjection of spent geothermal fluids has become common practise in geothermal power plants. Reinjection can, despite being mostly beneficial, have unwanted effects such as cooling of nearby production wells and injection-induced earthquakes. Tracer tests, along with their modeling and interpretation, are important tools for monitoring the flow paths of the injected water and to predict reservoir cooling. Knowledge of flow paths in the system allows for better resource management and a more sustainable utilization. A simulation model of the Húsmúli reinjection zone in the Hellisheiði Geothermal Power Plant in SW-Iceland was developed using the TOUGH2 program. Its hydrological parameters, porosity and permeability, were calibrated using results from an extensive tracer test carried out in the area in 2013-2015. The aim of the simulations was to obtain better understanding of the flow paths in Húsmúli since, despite fast tracer recovery in production wells in the area, hardly any cooling has been observed in those production wells. The results show that the tracer recovery can be modelled by means of permeable flow channels within the medium. Good results for tracer arrival and concentration peaks were obtained both by assuming a single wide channel and several narrower ones. The parameters that gave the best fit for the single channel model were permeability of 5·10-12 m2 and porosity ranging from 0.2%–3%. For the multi-channel model they were 1·10-12 m2 and 0.2%–3.5%, respectively. The high permeability and low porosity in the channels make for an abstract representation of fractured zones within the medium. Greater cooling was seen with the single-channel modelling approach than with the multiple narrower channel approach, the latter showing hardly any cooling in the production elements during the simulation time. This indicates that the flow paths are more likely multiple channels consisting of fracture networks. The simulations show that the flow paths are lengthened by sinking of the fluid to greater depth because of the higher density of the colder injected water. This implies that the injected fluid is warmed up by contact with a larger volume of rock, causing a limited and delayed cooling effect. / Geotermisk energi anses vara en förnybar och miljövänlig energikälla. Som sådan, kan den spela en viktig roll för att minska utsläppen av växthusgaser från energisektorn över hela världen och genom det bekämpa antropogena klimatförändringar. Geotermiska kraftverk extraherar het vätska från berggrunden, separerar ångan från vätskan och använder sedan ångan för att driva turbiner som genererar elektricitet. Injektion av använd geotermisk vätska från kraftverk har blivit vanligt i den geotermiska industrin för att kassera använd geotermisk vätska, upprätthålla systemtrycket och öka produktionseffektiviteten. Återinjektion av nedkyld vätska kan, trots att den är mestadels fördelaktig, ha oönskade effekter, såsom kylning av närliggande produktionsbrunnar och injektionsinducerad seismisk aktivitet. Spårprov, som möjliggör spårning av en kemikalie inom systemet, tillsammans med modellering, är viktiga verktyg för att förstå flödesvägarna för det injicerade vattnet samt att kunna förutsäga nedkylningar av vattenmagasin. Kunskap om flödesvägar i systemet möjliggör bättre resurshantering och ett mer hållbart användande. En simuleringsmodell av återinjektionszonen för det geotermiska kraftverket Hellisheiði på sydvästra Island, Húsmúli, utvecklades med hjälp av simuleringsprogrammet TOUGH2. Dess hydrologiska parametrar, permeabilitet och porositet, kalibrerades med hjälp av resultat från ett omfattande spårtest som utfördes i området 2013-2015. Syftet med simuleringarna var att få en bättre förståelse av flödesvägarna i Húsmúli. Detta er inressant eftersom trots en snabb återhämtning av spårämne i produktionsbrunnar, har knappt någon kylning observerats i området. Resultaten visar att återhämtningen av spårämnet inte kan modelleras med ett homogent medium, men kan istället modelleras genom att bygga permeabla strömningskanaler inom mediet. Goda resultat för spårämnesankomst och koncentrationstoppar erhölls både genom att använda en enda bred kanal och flera smalare. Kanalerna ger en abstrakt representation av sprickzoner inom mediet. Större kylning observerades för modelleringsmetoden med en enkel bred kanal än med flera smalare kanaler. Detta indikerar att flödesvägarna i området troligtvis går genom flera sprickzoner. Flödesvägarna förlängs genom att vätskan sjunker till ett större djup på grund av den högre densiteten hos det injicerade vattnet. Detta innebär att den injicerade vätskan värms upp genom kontakt med en större volym berg, vilket medför en begränsad och fördröjd kylningseffekt.
6

Analytical and Numerical Modeling for Heat Transport in a Geothermal Reservoir due to Cold Water Injection

Ganguly, Sayantan January 2014 (has links) (PDF)
Geothermal energy is the energy naturally present inside the earth crust. When a large volume of hot water and steam is trapped in subsurface porous and permeable rock structure and a convective circulating current is set up, it forms a geothermal reservoir. A geothermal system can be defined as - convective water in the upper crust of earth, which transfers heat from a heat source (in the reservoir) to a heat sink, usually the free surface. A geothermal system is made up of three main elements: a heat source, a reservoir and a fluid, which is the carrier that transfers the heat. As an alternative source of energy geothermal energy has been under attention of the researchers for quite some time. The reason behind this is the existence of several benefits like clean and renewable source of energy which has considerable environmental advantage, with no chemical pollutants or wastes are generated due to geothermal emissions, and the reliability of the power resource. Hence research has been directed in several directions like exploration of geothermal resources, modeling the characteristics of different types of geothermal reservoirs and technologies to extract energy from them. The target of these models has been the prediction of the production of the hot water and steam and thus the estimation of the electricity generating potential of a geothermal reservoir in future years. In a geothermal power plant reinjection of the heat depleted water extracted from the geothermal reservoir has been a common practice for quite some time. This started for safe wastewater disposal and later on the technology was employed to obtain higher efficiency of heat and energy extraction. In most of the cases a very small fraction of the thermal energy present in the reservoir can be recovered without the reinjection of geothermal fluid. Also maintaining the reservoir pressure is essential which gradually reduces due to continuous extraction of reservoir fluid without reinjection, especially for reservoirs with low permeabilities. Although reinjection of cold-water has several benefits, the possibility of premature breakthrough of the cold-water front, from injection well zone to production well zone, reduces the efficiency of the reservoir operation drastically. Hence for maintaining the reservoir efficiency and longer life of the reservoir, the injectionproduction well scheme is to be properly designed and injection and extraction rates are to be properly fixed. Modeling of flow and heat transport in a geothermal reservoir due to reinjection of coldwater has been attempted by several researchers analytically, numerically and experimentally. The analytical models which exist in this field deal mostly with a single injection well model injecting cold-water into a confined homogeneous porous-fractured geothermal reservoir. Often the thermal conductivity is neglected in the analytical study considering it to be negligible which is not always so, as proved in this study. Moreover heterogeneity in the reservoir is also a major factor which has not been considered in any such analytical study. In the field of numerical modeling there also exists a need of a general coupled three-dimensional thermo-hydrogeological model including all the modes of heat transport (advection and conduction), the heat loss to the confining rocks, the regional groundwater flow and the geothermal gradient. No study existing so far reported such a numerical model including those mentioned above. The present study is concerned about modeling the non-isothermal flow and heat transport in a geothermal reservoir due to reinjection of heat depleted water into a geothermal reservoir. Analytical and numerical models are developed here for the transient temperature distributions and advancement of the thermal front in a geothermal reservoir which is generated due to the cold-water injection. First homogeneous geothermal aquifers are considered and later heterogeneities of different kinds are brought into picture. Threedimensional numerical models are developed using a software code DuMux which solves flow and heat transport problems in porous media and can handle both single and multiphase flows. The results derived by the numerical models have been validated using the results from the analytical models derived in this study. Chapter 1 of the thesis gives a brief introduction about different types of geothermal reservoirs, followed by discussion on the governing differential equations, the conceptual model of a geothermal reservoir system, the efficiency of geothermal reservoirs, the modeling and simulation concepts (models construction, boundary conditions, model calibration etc.). Some problems related with geothermal reservoirs and geothermal power is also discussed. The scenario of India in the context having a huge geothermal power potential is described and different potential geothermal sites have been pointed out. In Chapter 2, the concept of reinjection of the heat depleted (cold) water into the geothermal reservoir is introduced. Starting with a brief history of the geothermal reinjection, the chapter describes the purpose and the need of reinjection of geothermal fluid giving examples of different geothermal fields over the world where reinjection has been in practice and benefitted by that. The chapter further discusses on the problems and obstacles faced by the geothermal projects resulting from the geothermal reinjection, most important of which is the thermal-breakthrough and cooling of production wells. Lastly the problem of this thesis is discussed which is to model the transient temperature distribution and the movement of the cold-water thermal front generated due to the reinjection. The need of this modeling is elaborated which represents the motivation of taking up the problem of the thesis. Chapter 3 describes an analytical model developed for the transient temperature in a porous geothermal reservoir due to injection of cold-water. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. The analytical solutions represent the transient temperature distribution in the geothermal aquifer and the confining rocks and model the movement of the cold-water thermal front in them. The results show that the heat transport to the confining rocks plays an influential role in the transient heat transport here. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be high on the results. Chapter 4 represents another analytical model for transient temperature distribution in a heterogeneous geothermal reservoir underlain and overlain by impermeable rocks due to injection of cold-water. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. Simpler solutions are also derived afterwards first neglecting the longitudinal conduction, then the heat loss to the confining rocks depending on the situation where the contribution of them to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of heat loss to the confining rocks in this case is also determined and the influence of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results show that the heterogeneity plays a major role in controlling the cold-water thermal front movement. The transient temperature distribution in the geothermal reservoir depends on the type of heterogeneity. The heat loss to the confining rocks of the geothermal aquifer also has influence on the heat transport phenomenon. In Chapter 5 another analytical model is derived for a heterogeneous reservoir where the heterogeneous geothermal aquifer considered is a confined aquifer consisted of homogeneous layers of finite length and overlain and underlain by impermeable rock media. All the different layers in the aquifer and the overlying and underlying rocks are of different thermo-hydrogeological properties. Results show that the advancement of the cold-water thermal front is highly influenced by the layered heterogeneity of the aquifer. As the cold-water thermal front encounters layers of different thermo-hydrogeological properties the movement of it changes accordingly. The analytical solution derived here has been compared with a numerical model developed by the multiphysics software code COMSOL which shows excellent agreement with each other. Lastly it is shown that approximation of the properties of a geothermal aquifer by taking mean of the properties of all the layers present will lead to erroneous estimation of the temperature distribution. Chapter 6 represents a coupled three-dimensional thermo-hydrogeological numerical model for transient temperature distribution in a confined porous geothermal aquifer due to cold-water injection. This 3D numerical model is developed for solving more practical problems which eliminate the assumptions taken into account in analytical models. The numerical modeling is performed using a software code DuMux as mentioned before. Besides modeling the three-dimensional transient temperature distribution in the model domain, the chapter investigates the regional groundwater flow has been found to be a very important parameter to consider. The movement of the thermal front accelerates or decelerates depending on the direction of the flow. Influence of a few parameters involved in the study on the transient heat transport phenomenon in the geothermal reservoir domain, namely the injection rate, the permeability of the confining rocks and the thermal conductivity of the geothermal aquifer is also evaluated in this chapter. The models have been validated using analytical solutions derived in this thesis. The results are in very good agreement with each other. In Chapter 7 the main conclusions drawn from the study have been enlisted and the scope of further research is also pointed out.
7

Optimization and Analysis of the Effects of Temperature, pH, and Injection Techniques on a Slow-Release Permanganate Gel for DNAPL Remediation

Cosgrove, Rex M. 17 September 2020 (has links)
No description available.
8

Improved tracer techniques for georeservoir applications / Artificial tracer examination identifying experimentally relevant properties and potential metrics for the joint application of hydrolysis tracer and heat injection experiments

Maier, Friedrich 24 October 2014 (has links)
Für eine effiziente und nachhaltige Nutzung von Georeservoiren sind bestmögliche Reservoirmanagementverfahren erforderlich. Oft setzen diese Verfahren auf Tracer-Tests. Dabei enthalten die aufgezeichneten Tracersignale integrale Informationen der Reservoireigenschaften. Tracer-Tests bieten somit eine leistungsfähige Technik zur Charakterisierung und Überwachung der bewirtschafteten Georeservoire. Im Gegensatz zu Tracer-Tests mit konservativen Tracern, welche bereits etablierte Testroutinen zur Verfügung stellen, ist die Verwendung von reaktiven Tracern ein neuer Ansatz. Aufgrund unpassender physikalisch-chemischer Modelle und/oder falschen Annahmen ist die Analyse und Interpretation von reaktiven Tracersignalen jedoch oft verzerrt, fehlinterpretiert oder sogar unmöglich. Reaktive Tracer sind dennoch unersetzbar, da sie durch die gezielte Ausnutzung selektiver und spezifischer Reaktionen mögliche Metriken von Reservoirtestverfahren auf einzigartige Weise erweitern. So liefern reaktive Tracer für ein integriertes Reservoirmanagement geforderten Aussagen über Reservoirmetriken wie z.B. Wärmeaustauschflächen oder in-situ Temperaturen. Um Unsicherheiten bei der Auswertung von Tracerexperimenten zu reduzieren, werden theoretische und experimentelle Untersuchungen zu hydrolysierenden Tracern vorgestellt. Diese Tracer sind durch ihre Reaktion mit Wasser charakterisiert. Einerseits können sie als thermo-sensitive Tracer Informationen über Temperaturen und abgekühlte Anteile eines beprobten Reservoirs liefern. Für die Interpretation von thermo-sensitiven Tracerexperimenten sind die Kenntnis der zugrunde liegenden Reaktionsmechanismen sowie bekannte Arrhenius-Parameter Voraussetzung, um die verwendete Reaktion pseudo erster Ordnung nutzen zu können. Darüber hinaus ermöglichen die verwendeten Verbindungen durch ihre Fluoreszenzeigenschaften eine Online-Messung. Um die Empfindlichkeit und praktischen Grenzen thermo-sensitiver Tracer zu untersuchen, wurden kontrollierte Laborexperimente in einem eigens dafür entwickelten Versuchsaufbau durchgeführt. Dieser besteht aus zwei seriell geschalteten Säulen, die beide mit Sand gefüllt sind und jeweils auf eine eigene Temperatur eingestellt werden können. Somit ist es möglich, verschiedene thermische Einstellungen zu betrachten. Die untersuchten experimentellen Szenarien imitieren größtenteils Feldanwendungen: Durchflussexperimente sowie auch Experimente mit einer Umkehr der Fließrichtung. Darüber hinaus wurde untersucht, ob thermo-sensitive Tracer auch sensitiv gegenüber der Position der Temperaturfront sind. Dabei wurden die Tracer kontinuierlich oder gepulst injiziert. Die Ergebnisse bestätigen die zugrunde liegende Theorie experimentell. Wenn die pH-Abhängigkeit der Hydrolyse bei der Analyse berücksichtigt wird, kann eine Temperaturschätzung mit einer Genauigkeit und Präzision von bis zu 1 K erreicht werden. Die Schätzungen sind von Verweilzeit und gemessenen Konzentrationen unabhängig. Weiterhin lässt sich eine Schätzung über den ausgekühlten Anteil des Systems erhalten. Durch die steuerbaren und definierten Laborbedingungen ist es erstmals möglich, die geforderte Anwendbarkeit von thermo-sensitiven Tracern belastbar nachzuweisen. Des Weiteren wird eine zweite Anwendung hydrolysierender Tracer vorgeschlagen. Beim Lösen von CO2 für „Carbon Capture and Storage“-Anwendungen hängt die Effizienz maßgeblich von der Grenzfläche zwischen CO2 und der Sole in tiefen Reservoiren ab. Somit ist diese Metrik wichtig, um die Effizienz der CO2 Auflösung in Wasser zu bewerten. Die gezielt entwickelten Kinetic-Interface-Senitive-Tracer (KIS-Tracer) nutzen, zusätzlich zur Hydrolyse an der Grenzfläche, die unterschiedlichen Lösungseigenschaften von Tracer und Reaktionsprodukt im entsprechenden Fluid. Somit lassen sich potentiell Aussagen über die Dynamik der Grenzfläche machen. Neben dem grundlegenden Konzept sowie den theoretischen Tracer-Anforderungen wird eine erste Anwendung im Laborexperiment vorgestellt. Diese zeigt das erfolgreiche, zielorientierte Moleküldesign und bietet eine experimentelle Basis für ein makroskopisches numerisches Modell, mit welchem numerische Simulationen verschiedener Testszenarien durchgeführt werden, um das Zusammenspiel von KIS-Tracer und dynamischer Grenzfläche zu untersuchen. Aufgrund der Temperaturabhängigkeit der Reaktionsgeschwindigkeit hydrolysierender Tracer werden in der Regel auch thermische Signale aufgezeichnet. Der letzte Teil prüft die Möglichkeit, Informationen aus den aufgezeichneten Temperaturen zu extrahieren. Für ein idealisiertes Einzelkluftsystem wird eine Reihe von analytischen Lösungen diskutiert. Aus thermischen Injektion-/Entzugsversuchen können damit räumliche und zeitliche Profile abgeleitet werden. Mit der Verwendung von mathematisch effizienten Inversionsverfahren wie der iterativen Laplace-Transformation lassen sich rechentechnisch effiziente Realraum-Lösungen ableiten. Durch die Einführung von drei dimensionslosen Kennzahlen können die berechneten Temperaturprofile auf Bruchbreite oder Wärmetransportrate, wechselnde Injektions-/ Pumpraten und/oder auf in der Nähe beobachtbare räumliche Informationen analysiert werden. Schließlich werden analytische Lösungen als Kernel-Funktionen für nichtlineare Optimierungsalgorithmen vorgestellt. Zusammenfassend bearbeitet die vorliegende Arbeit den Übergang zwischen Tracerauswahl und Traceranwendung. Die Ergebnisse helfen Planungs- und Analyseunsicherheiten zu reduzieren. Dies wird bezüglich der Empfindlichkeit gegenüber Temperaturen, Kühlungsanteilen, flüssig/flüssig-Grenzfläche, Kluftbreite und Wärmetransportrate gezeigt. Somit bieten die vorgestellten Tracerkonzepte neue Metriken zur Verbesserung von Reservoirmanagementverfahren. Die experimentellen Ergebnisse und die neuen analytischen Modelle ermöglichen einen tiefen Einblick in die kollektive Rolle der Parameter, welche die Hydrolyse und den Wärmetransport in Georeservoiren kontrollieren.

Page generated in 0.077 seconds