• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CMOS Contact Imagers for Spectrally-multiplexed Fluorescence DNA Biosensing

Ho, Derek 08 August 2013 (has links)
Within the realm of biosensing, DNA analysis has become an indispensable research tool in medicine, enabling the investigation of relationships among genes, proteins, and drugs. Conventional DNA microarray technology uses multiple lasers and complex optics, resulting in expensive and bulky systems which are not suitable for point-of-care medical diagnostics. The immobilization of DNA probes across the microarray substrate also results in substantial spatial variation. To mitigate the above shortcomings, this thesis presents a set of techniques developed for the CMOS image sensor for point-of-care spectrally-multiplexed fluorescent DNA sensing and other fluorescence biosensing applications. First, a CMOS tunable-wavelength multi-color photogate (CPG) sensor is presented. The CPG exploits the absorption property of a polysilicon gate to form an optical filter, thus the sensor does not require an external color filter. A prototype has been fabricated in a standard 0.35μm digital CMOS technology and demonstrates intensity measurements of blue (450nm), green (520nm), and red (620nm) illumination. Second, a wide dynamic range CMOS multi-color image sensor is presented. An analysis is performed for the wide dynamic-range, asynchronous self-reset with residue readout architecture where photon shot noise is taken into consideration. A prototype was fabricated in a standard 0.35μm CMOS process and is validated in color light sensing. The readout circuit achieves a measured dynamic range of 82dB with a peak SNR of 46.2dB. Third, a low-power CMOS image sensor VLSI architecture for use with comparator based ADCs is presented. By eliminating the in-pixel source follower, power consumption is reduced, compared to the conventional active pixel sensor. A 64×64 prototype with a 10μm pixel pitch has been fabricated in a 0.35μm standard CMOS technology and validated experimentally. Fourth, a spectrally-multiplexed fluorescence contact imaging microsystem for DNA analysis is presented. The microsystem has been quantitatively modeled and validated in the detection of marker gene sequences for spinal muscular atropy disease and the E. coli bacteria. Spectral multiplexing enables the two DNA targets to be simultaneously detected with a measured detection limit of 240nM and 210nM of target concentration at a sample volume of 10μL for the green and red transduction channels, respectively.
32

Záznamového zařízení pro oblast civilního letectví / Data storage system for area of civil aviation

Kotulič, Dominik January 2018 (has links)
In the thesis the design of the Data Storage System (DSS) is proposed with the respect to the V-Model methodology. The design is based on users requirements, from which the system requirements are created and the technical specification of the DSS is developed. In the technical specifications the functionality of the DMM and HMI DSS subsystems are described and sub-system requirements are assigned to them, then they are subdivided and assigned to individual DMM (Data memory module) and HMI hardware items. Moreover, requirements are analyzed on hardware items, specific electronic components, are selected and implemented into the block design of the DMM hardware. Based on the block design of hardware, the hardware of the DMM subsystem is designed, selectively simulated and implemented along with the printed circuit board. On the implemented hardware of the DMM subsystems measurements are performed in order to verify the basic functionality of the hardware and the calculated, assimilated and measured values are compared as well. At the end of the thesis there is a short description of the implementation of the software design and its use for basic initialization of the selected processor, together with the verification of its basic function - measuring the frequency of the internal clock sources and the clock domains. The work is completed by sending a message of defined parameters to the selected communication line and sapling it by an oscilloscope, so that the basic function of the DMM subsystem is verified.
33

10 portový GSM reléový spínač s GUI / 10 port GSM relay switch with GUI

Bartulec, Tomasz January 2008 (has links)
System hardware and software design for a GSM switch with ten switching outputs, controlled via SMS. Description of used GSM module and its properties, feasibility and requirements, design and description of supply circuits for module outputs to relay outputs decoding, plug-in realisation of outputs. GSM module application software creation, remote SMS control requests implementation, sender's phone number check and information about completed requests by call-backs. Adding AT command to set up device. Development of web server providing control of switch throught Internet browser, solving communication between server and device, and data management. Testing of created SW and evaluation of final design from aspects of usage.
34

Soubor laboratorních úloh k demonstraci počítačových útoků / Collection of laboratory works for demonstration of computer attacks

Plašil, Matouš January 2015 (has links)
Diploma thesis describes published attacks on computers and computer networks. Principles of footprinting such as availability check, OS detection, port scanning were described. Next part explains attacks on confidentiality, integrity and availability. In the practical part were created four laboratory tasks and a virtual environment which allowed testing of ARP spoofing, DNS spoofing, SSL strip, Cross-site scripting, SQL injection, flooding attacks (TCP, ICMP, UDP), TCP reset and attack on operating system using backdoor with Metasploit framework. In practical part were also created video samples with attacks and documentation for teachers.
35

Nonlinear and Hybrid Feedbacks with Continuous-Time Linear Systems / Rétroactions non linéaires et hybrides avec systèmes linéaires à temps continu

Cocetti, Matteo 21 May 2019 (has links)
Dans cette thèse, nous étudions la rétroaction de systèmes linéaires invariants dans le temps reliés entre eux par trois blocs non linéaires spécifiques : un opérateur de lecture/arrêt, un mécanisme de réinitialisation de commutation et une zone morte adaptative. Cette configuration ressemble au problème de Lure étudié dans le cadre de stabilité absolue, mais les types de non-linéarités considérés ici ne satisfont pas (en général) une condition sectorielle. Ces blocs non linéaires donnent lieu à toute une série de phénomènes intéressants, tels que des ensembles compacts d’équilibres, des ensembles hybrides oméga-limites et des contraintes d’état. Tout au long de la thèse, nous utilisons le formalisme des systèmes hybrides pour décrire ces phénomènes et analyser ces boucles. Nous obtenons des conditions de stabilité très précises qui peuvent être formulées sous forme d’inégalités matricielles linéaires, donc vérifiables avec des solveurs numériques efficaces. Enfin, nous appliquons les résultats théoriques à deux applications automobiles. / In this thesis we study linear time-invariant systems feedback interconnected with three specific nonlinear blocks; a play/stop operator, a switching-reset mechanism, and an adaptive dead-zone. This setup resembles the Lure problem studied in the absolute stability framework, but the types of nonlinearities considered here do not satisfy (in general) a sector condition. These nonlinear blocks give rise to a whole range of interesting phenomena, such as compact sets of equilibria, hybrid omega-limit sets, and state constraints. Throughout the thesis, we use the hybrid systems formalism to describe these phenomena and to analyze these loops. We obtain sharp stability conditions that can be formulated as linear matrix inequalities, thus verifiable with numerically efficient solvers. Finally, we apply the theoretical findings to two automotive applications.
36

Digital Microwave Control of Superconducting Qubits / Digital Mikrovågskontroll av Supraledande Kvantbitar

Di Carlo, Giuseppe Ruggero January 2022 (has links)
We manipulate two superconducting qubits using digital microwave electronics. Starting fromtheir characterization, we develop a real-time reset scheme and implement the iSwap gate. Thequbits’ parameters are obtained using standard single-qubit characterization techniques, such asRabi and Ramsey oscillations and frequency sweep of the resonators. We also characterized theexperimental setup, including finding the working point of a Josephson Parametric Amplifierand the coupler between the two qubits. We solve the linear differential equations that modelthe resonator, in order to design a high-fidelity, single-shot qubit-measurement pulse shape,which actively empties the cavity. Using this pulse, we achieve a readout assignment fidelity of99.9%. The readout is formed in real-time using template matching. In addition, we implementa conditional reset of the qubit’s state in 1.4 μs, which resets the excited state population from5.4% to 0.5%. We simulate the cavity using QuTip to further optimize the readout pulse.Furthermore, we characterize the third energy level of the qubit to implement a qutrit readoutand observe a second excited state population of 0.3%, in accordance with theory. Finally,we implement the iSwap gate that, together with single-qubit gates, constitute a set of universalquantum gates, where we swap the 95.4% of the quantum state between the qubits in 690 ns. Allexperiments, including the pulse events and synchronization of the readout and feedback, wereperformed using a digital microwave platform based on a radio-frequency-on-a-chip system,and implemented using a Python interface. / Vi manipulerar två supraledande kvantbitar med digital mikrovågselektronik. Vi utgår frånderas karakterisering och utvecklar en realtidsåterställningsschema och implementerar iSwap-grinden. Kvantbitarnas parametrar erhålls med standardtekniker för karakterisering av enskildakvantbitar, såsom Rabi- och Ramsey-svängningar och frekvenssvep av resonatorerna. Vikaraketeriserar även den experimentella uppställningen, där vi finner arbetspunkten för enJosephson-parametrisk förstärkare, samt kopplaren mellan de två kvantbitarna. Vi löser delinjära differentialekvationerna som modellerar resonatorn, i syfte att designa en pulsformför en enkelmätning av en kvantbit med hög tillförlitlighet som aktivt tömmer kaviteten.Med denna puls uppnår vi en avläsningstillförlitlighet på 99,9 %. Avläsningspulsen bildas irealtid med hjälp av mallmatchning. Därtill implementerar vi en villkorlig återställning avkvantbitens tillstånd på 1,4 μs, vilket återställer den exciterade tillståndspopulationen från 5,4 %till 0,5 %. Vi simulerar kaviteten med QuTip för att ytterligare optimera avläsningspulsen.Dessutom karakteriserar vi den tredje energinivån på kvantbiten för att implementera enså-kallad qutrit-avläsning och observerar en andraexciterad tillståndspopulation på 0,3 %,i enlighet med teorin. Slutligen implementerar vi iSwap-grinden som, tillsammans medgrindarna för enskilda kvantbitar, utgör en uppsättning universella kvantgrindar, är vi byter95,4 % av kvanttillståndet mellan våra kvantbitarna på 0,6 μs. Alla experiment, såsompulshändelserna och synkroniseringen av avläsningspulsen och återkopplingspulsen, utfördesmed hjälp av en digital mikrovågsplattform, baserad på ett radiofrekvens-på-ett-chip-system,och implementerades med ett Python-gränssnitt.
37

Reducing Airflow Energy Use in Multiple Zone VAV Systems

Tukur, Ahmed Gidado 08 September 2016 (has links)
No description available.
38

海外可轉換公司債的評價-考慮平均重設條款、信用風險及利率期間結構

張世東, CHANG SHIH TUNG Unknown Date (has links)
影響海外可轉換公司債的因素有許多,包括股價、國內利率、國外利率、匯率,若將時間變數也加入計算,其變動因子高達5階,這種「高維度」的問題已非有限差分法或樹狀方法能處理;且海外可轉債常附有平均式條款、回顧式條款等「路徑相依」性質的選擇權,更是格狀結構數值法(Lattice)難以處理的問題。若使用蒙地卡羅模擬,雖然可以處理高維度及路徑相依的問題,但遇到美式契約時,則會有無法判斷轉換時點的問題,更遑論還必須處理的重設條款或界限型契約。 本論文研究海外可轉換公司債的評價,特點是可以處理其契約中各種可能的複雜條款,本文所使用的最小平方蒙地卡羅模擬,由Longstaff and Schwartz [2000]提出,對於美式契約、路徑相依及高維度問題皆可處理。本文並以Hull and White利率三元樹配適公司債利率符合市場利率期間結構。此外本研究加入海外可轉換公司債評價中最重要的信用風險因素,過去可轉債文獻理論價格大都高於實際市價,這是由於忽略了公司的信用風險溢酬,本文所使用的信用風險模型是由Lando [1998]所提出,特點是不以信用等級作為考量,探討公司特性與所屬產業,並考慮總體因素對違約機率的影響,從市場價格中估計違約密度參數,進而求得信用價差。 本研究對仁寶電腦在2002年所發的ECB做實證研究,比較LSM理論價格與實際市價之誤差,及對Takahashi[2001]所提出之歐式模型做比較,發現本文提出模型之評價結果相當不錯,誤差僅有0.83%;此外並對建華金控2002所發之ECB,探討各種複雜新奇條款對ECB價格的影響,發現市場上嚴重低估了重設條款所提高的價值,而實際市價卻十分接近僅含賣回條款的理論價格。
39

Wafer-level heterogeneous integration of MEMS actuators

Braun, Stefan January 2010 (has links)
This thesis presents methods for the wafer-level integration of shape memory alloy (SMA) and electrostatic actuators to functionalize MEMS devices. The integration methods are based on heterogeneous integration, which is the integration of different materials and technologies. Background information about the actuators and the integration method is provided. SMA microactuators offer the highest work density of all MEMS actuators, however, they are not yet a standard MEMS material, partially due to the lack of proper wafer-level integration methods. This thesis presents methods for the wafer-level heterogeneous integration of bulk SMA sheets and wires with silicon microstructures. First concepts and experiments are presented for integrating SMA actuators with knife gate microvalves, which are introduced in this thesis. These microvalves feature a gate moving out-of-plane to regulate a gas flow and first measurements indicate outstanding pneumatic performance in relation to the consumed silicon footprint area. This part of the work also includes a novel technique for the footprint and thickness independent selective release of Au-Si eutectically bonded microstructures based on localized electrochemical etching. Electrostatic actuators are presented to functionalize MEMS crossbar switches, which are intended for the automated reconfiguration of copper-wire telecommunication networks and must allow to interconnect a number of input lines to a number of output lines in any combination desired. Following the concepts of heterogeneous integration, the device is divided into two parts which are fabricated separately and then assembled. One part contains an array of double-pole single-throw S-shaped actuator MEMS switches. The other part contains a signal line routing network which is interconnected by the switches after assembly of the two parts. The assembly is based on patterned adhesive wafer bonding and results in wafer-level encapsulation of the switch array. During operation, the switches in these arrays must be individually addressable. Instead of controlling each element with individual control lines, this thesis investigates a row/column addressing scheme to individually pull in or pull out single electrostatic actuators in the array with maximum operational reliability, determined by the statistical parameters of the pull-in and pull-out characteristics of the actuators. / QC20100729
40

Electrical Switching And Thermal Studies On Certain Ternary Telluride Glasses With Silicon Additive And Investigations On Their Suitability For Phase Change Memory Applications

Anbarasu, M 10 1900 (has links)
The Phase Change Memories (PCM) based on chalcogenide glasses are being considered recently as a possible replacement for conventional Non Volatile Random Access Memories (NVRAM). The main advantages of chalcogenide phase change memories are their direct write/overwrite capability, lower voltages of operation, large write/erase cycles, easiness to integrate with logic, etc. The phase change random access memories work on the principle of memory switching exhibited by chalcogenide glasses during which a local structural change (between amorphous and crystalline states) occurs due to an applied electric field. The development of newer phase change materials for NVRAM applications is based on synthesizing newer glass compositions and investigating their electrical switching characteristics by applying current/voltage pulses of different waveforms. The thermal studies on chalcogenide glasses which provide information about thermal stability, glass forming ability, etc., are also important while selecting a chalcogenide glass for PCM applications. The present thesis work deals with electrical switching and thermal studies on certain silicon based ternary telluride glasses (As-Te-Si, Ge-Te-Si and Al-Te-Si). The effect of network topological thresholds on the composition dependence of switching voltages and thermal parameters such as glass transition temperature, specific heat capacity, non-reversing enthalpy, etc., of these glasses has been investigated. The first chapter of the thesis provides an introduction to various properties of chalcogenide glasses, including their applications in phase change memories. The fundamental aspects of amorphous solids such as glass formation, glass transition, etc., are presented. Further, the concepts of rigidity percolation and self organization in glassy networks and the influence of local structural effects on the properties of glassy chalcogenides are discussed. Also, a brief history of evolution of phase change memories is presented. The second chapter deals with the experimental techniques employed in this thesis work; for sample preparation and for electrical switching studies, Alternating Differential Scanning Calorimetry (ADSC), Raman spectroscopy, NMR spectroscopy, etc. The third chapter discusses the electrical switching and thermal studies on As30Te70-xSix (2 ≤ x ≤ 22) and As40Te60-xSix (2 ≤ x ≤ 17) glasses. The composition dependence of electrical switching voltage (VT) and thermal parameters such as glass transition temperature (Tg), crystallization temperature (Tc), thermal stability (Tc-Tg), etc., reveals the occurrence of extended rigidity percolation and chemical thresholds in As30Te70-xSix and As40Te60-xSix glasses. Chapter 4 presents the electrical switching and thermal studies on Ge15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit memory type electrical switching. While Ge15Te85-xSix glasses with x ≤ 5 exhibit a normal electrical switching, an unstable behavior is seen in the I-V characteristics of Ge15Te85-xSix glasses with x > 5 during the transition to ON state. Further, the switching voltage (VT) and initial resistance (R) are found to increase with addition of Si, exhibiting a change in slope at the rigidity percolation threshold of the Ge15Te85-xSix system. The ADSC studies on these glasses indicate the presence of an extended stiffness transition and a thermally reversing window in Ge15Te85-xSix in the composition range of 2 ≤ x ≤ 6. The fifth chapter deals with electrical switching investigations, thermal and structural studies on Al15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit two crystallization reactions (Tc1 and Tc2) for compositions with x < 8 and a single stage crystallization is seen for compositions above x = 8. Also, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85-xSix glasses in the composition range 4 ≤ x ≤ 8. Further, Al15Te85-xSix glasses are found to exhibit a threshold type electrical switching at ON state currents less than 2 mA. The start and the end of the thermally reversing window seen in the thermal studies are exemplified by a kink and saturation in the composition dependence of switching voltages respectively. 27Al Solid State NMR measurements reveal that in Al15Te85-xSix glasses, Al atoms reside in 4-fold as well as 6-fold coordinated environments. Unlike in Al-As-Te glasses, there is no correlation seen between the composition dependence of the fraction of 4-fold and 6-fold coordinated aluminum atoms and the switching behavior of Al-Te-Si samples. Chapter 6 provides a comparison of the properties of the three glassy systems studied (As-Te-Si, Ge-Te-Si and Al-Te-Si), made to identify the system better suited for phase change memory applications. It is found that the Ge-Te-Si glassy system has better electrical/thermal properties for phase change memory applications. The seventh chapter describes easily reversible SET-RESET processes in Ge15Te83Si2 glass which is a promising candidate for phase change memory applications. This sample exhibits memory switching at a comparatively low threshold electric field (Eth) of 7.3 kV/cm. The SET and RESET processes have been achieved with 1 mA triangular current pulse for the SET process and 1 mA rectangle pulse (of 10 msec width) for RESET operation respectively. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse. About 6.5x104 SET-RESET cycles have been achieved without any damage to the device. In chapter 8, results of in-situ Raman scattering studies on the structural changes occurring during the SET and RESET processes in Ge15Te83Si2 sample, are presented. It is found that the degree of disorder in the glass is reduced from OFF to SET state. The local structure of the sample under RESET condition is similar to that in the OFF state. The Raman results are found to be consistent with the switching results which indicate that the Ge15Te83Si2 glass can be SET and RESET easily. Further, Electron Microscopic studies on switched samples indicate the formation of nanometer sized particles of cSiTe2. A summary of the results obtained and the scope for future work are included in the chapter 9 of the thesis.

Page generated in 0.0425 seconds