1 |
The timescales of magmatic processes prior to a caldera-forming eruption / Les échelles de temps des processus magmatiques avant une éruption caldériqueFabbro, Gareth Nicholas 24 April 2014 (has links)
Les grandes éruptions caldériques sont parmi les phénomènes les plus destructeurs de la Terre, mais les processus à l’origine des grands réservoirs de magma siliceux et pauvre en cristaux qui alimentent ces éruptions ne sont pas bien compris. Le temps de stockage de ces réservoirs dans la croûte supérieure a un intérêt particulier. De longs temps de stockage—jusqu’à 105 ans—ont été estimés en utilisant les temps de repos entre les éruptions et les âges radiométriques des cristaux qui se trouvent dans les produits éruptifs. Par contre, des travaux récents sur la diffusion dans des cristaux suggèrent que les réservoirs qui alimentent même les plus grandes éruptions peuvent se mettre en place pendant une période beaucoup plus courte—101–102 ans. Afin de répondre à cette question, j’ai étudié l’éruption dacitique de Cape Riva de Santorin, Grèce (>10km3, 22 ka). Pendant les 18.000 ans précédant cette éruption, une série de dômes et de coulées dacitiques a été émise, alternant avec des dépôts de ponce dacitique (le complexe de dômes de Therasia). Ces dacites ont des compositions similaires à celle qui a été émise pendant l’éruption de Cape Riva, et ont été décrites précédemment comme des « fuites » provenant du réservoir de Cape Riva pendant sa croissance. Cependant, le magma de Cape Riva est appauvri en éléments incompatibles (tels que K, Zr, La, Ce) par rapport au magma de Therasia, une différence qui apparaît également dans les cristaux de plagioclase. Cette différence ne peut pas être expliquée par des processus peu profonds, tels que la cristallisation fractionnée ou l’assimilation de la croûte, ce qui suggère que les magmas de Cape Riva et Therasia ont des origines différentes. En outre, il existe des arguments tendant à montrer que les dacites de Therasia n’ont pas été alimentées par un réservoir majoritairement liquide ayant eu une longue durée de vie. Il y a des variations non systématiques dans la composition du magma, les compostions des bords ainsi que les caractéristiques des cristaux de plagioclase tout au long de la séquence. De plus, les temps de résidence à haute température des cristaux de plagioclase et d’orthopyroxène estimés par des modèles de diffusion sont 101–102 ans. Ces temps sont courts par rapport au temps moyen entre éruptions (1.500 ans), ce qui suggère que les cristaux observés dans chaque coulée ne se sont formés que peu de temps avant l’éruption. Les différentes teneurs en éléments incompatibles indiquent qu’un nouveau magma s’est mis en place dans le système volcanique superficiel peu de temps avant l’éruption de Cape Riva. Cet apport de magma a eu lieu après la dernière éruption de Therasia, qui s’est produite <2.800±1.400 ans avant l’éruption de Cape Riva selon les âges 40Ar/39Ar. Les périphéries des cristaux de plagioclase présents dans la dacite de Cape Riva sont en équilibre avec une rhyodacite, avec une composition similaire à celui du verre de l’éruption. Cependant, les zonations dans les éléments majeurs et traces enregistrent des changements dans la composition du liquide magmatique pendant la croissance des cristaux. La composition du centre de la plupart des cristaux de plagioclase est la même que celle des bords ; toutefois ces cristaux sont souvent partiellement résorbés, et la croissance a repris avec du plagioclase plus calcique. Ces cycles se répètent jusqu’à trois fois. La relation étroite entre la teneur en anorthite, Sr et Ti des différentes zones suggère que la composition des plagioclases est corrélé avec la composition du liquide, allant de liquides dacitiques à rhyodacitiques. Des cristaux d’orthopyroxène révèlent une séquence similaire. Les motifs de zonation sont interprétés comme un témoin de la formation du réservoir de Cape Riva dans la croûte supérieure par le mélange de plusieurs magmas ayant des compositions diverses. Des modèles de diffusion de Mg dans le plagioclase et de Fe–Mg dans l’orthopyroxène suggèrent que ce mélange a eu lieu 101–102 ans avant l’éruption. / Large, explosive, caldera-forming eruptions are amongst the most destructive phenomena on the planet, but the processes that allow the large bodies of crystal-poor silicic magma that feed them to assemble in the shallow crust are still poorly understood. Of particular interest is the timescales over which these reservoirs exist prior to eruption. Long storage times—up to 105 y—have previously been estimated using the repose times between eruptions and radiometric dating of crystals found within the eruptive products. However, more recent work modelling diffusion within single crystals has been used to argue that the reservoirs that feed even the largest eruptions are assembled over much shorter periods—101–102 y. In order to address this question, I studied the >10km3, 22-ka, dacitic Cape Riva eruption of Santorini, Greece. Over the 18 ky preceding the Cape Riva eruption a series of dacitic lava dome and coulées were erupted, and these lavas are interspersed with occasional dacitic pumice fall deposits (the Therasia dome complex). These dacites have similar major element contents to the dacite that was erupted during the Cape Riva eruption, and have previously been described as “precursory leaks” from the growing Cape Riva magma reservoir. However, the Cape Riva magma is depleted in incompatible elements (such as K, Zr, La, Ce) relative to the Therasia magma, as are the plagioclase crystals in the respective magmas. This difference cannot be explained using shallow processes such as fractional crystallisation or crustal assimilation, which suggests that the Cape Riva and Therasia magmas are separate batches. Furthermore, there is evidence that the Therasia dacites were not fed from a long-lived, melt-dominated reservoir. There are non-systematic variations in melt composition, plagioclase rim compositions, and plagioclase textures throughout the sequence. In addition, high-temperature residence times of plagioclase and orthopyroxene crystals from the Therasia dacites estimated using diffusion chronometry are 101–102 y. This is short compared to the average time between eruptions (1,500 y), which suggests the crystals in each lava grew only shortly before eruption. The different incompatible element contents of the Cape Riva and Therasia magmas and plagioclase crystals suggest that a new batch of incompatible-depleted silicic magma arrived in the shallow volcanic plumbing system shortly before the Cape Riva eruption. This influx must have taken place after the last Therasia eruption, which 40Ar/39Ar dates show occurred less than 2,800±1,400 years before the Cape Riva eruption. The rims of the plagioclase crystals found in the Cape Riva dacite are in equilibrium with a rhyodacite, with a similar composition to the Cape Riva glass. However, the major and trace element zoning patterns of the crystals record variations in the melt composition during their growth. The compositions at the centre of most crystals are the same as the rims; however, these crystals are often partially resorbed and overgrown by more calcic plagioclase. The plagioclase then grades normally back to rim compositions. This cycle is repeated up to three times. The tight relationships between the anorthite, Sr and Ti contents of the different zones suggests that the composition of the plagioclase crystals correlates with the composition of the melt from which theygrew. The different plagioclase compositions correspond to dacitic and rhyodacitic melt compositions. The orthopyroxene crystals reveal a similar sequence, although they only record one cycle. These zoning patterns are interpreted to document the assembly of the Cape Riva reservoir in the shallow crust through the amalgamation of multiple batches of compositionally diverse magma. Models of magnesium diffusion in plagioclase and Fe–Mg interdiffusion in orthopyroxene suggest that this amalgamation took place within 101–102 y of the Cape Riva eruption.
|
2 |
Timescales of large silicic magma systems : investigating the magmatic history of ignimbrite eruptions in the Altiplano-Puna Volcanic Complex of the Central Andes through U-Pb zircon datingKern, Jamie M. 05 June 2012 (has links)
The Altiplano-Puna Volcanic Complex in the Central Andes is one of the youngest large silicic volcanic fields (LSVFs) in the world, erupting over 13,000 km³ of material during multiple supereruptions from 11 to 1 Ma. Understanding the timescales over which magma is stored in the crust prior to eruption is crucial to understanding the development of LSVFs such as the APVC. The residence time of a magma is defined as the time between magma formation and its eruption. While the eruption age of a volcanic system is generally well constrained through ⁴⁰Ar/³⁹Ar dating of sanidine and biotite crystals, determining the time of magma formation offers a bigger challenge. U-Pb dating of zircon—an early crystallizing, ubiquitous phase in silicic systems—is a commonly used method for determining the timing of magma formation.
U-Pb zircon ages were collected for 16 ignimbrites representing the temporal and spatial distribution of the APVC. Zircon crystallization histories show significant overlap between eruptive centers of similar age separated by as much as 200 km. Ignimbrites erupted from the same multicyclic caldera show little relationship. This suggests that ignimbrites may share a deeper, regional source. Timescales of zircon crystallization for individual ignimbrites range from ~400 ka to more than 1 Ma, with little correlation with age or erupted volume. Ignimbrites with longer crystallization timescales frequently exhibit a stepped age distribution and highly variable U contents, suggesting that these ignimbrites likely formed in a very crystalline, low melt fraction environment while ignimbrites with short crystallization times and constrained U concentrations crystallized in high melt fraction systems. Zircon crystallization histories record periods of continuous zircon crystallization in the APVC that extend over 1.5-2 Ma pulses and correlate well with eruptive pulses recognized by previous studies.
Overall, zircon crystallization histories of the magmas feeding ignimbrite eruptions in the APVC record long timescales of magmatic activity from a shared regional source, likely the Altiplano-Puna Magma Body currently detectable underlying the APVC. / Graduation date: 2012
|
3 |
Consequences of Short Term Mobility Across Heterogeneous Risk Environments: The 2014 West African Ebola OutbreakJanuary 2018 (has links)
abstract: In this dissertation the potential impact of some social, cultural and economic factors on
Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability
to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is
addressed. A mathematical model, calibrated with data from the 2014 West African outbreak,
is used to show the dynamics of EVD control under various quarantine and isolation
effectiveness regimes. It is shown that in order to make a difference it must reach a high
proportion of the infected population. The effect of EVD-dead bodies has been incorporated
in the quarantine effectiveness. In Chapter four, the potential impact of differential
risk is assessed. A two-patch model without explicitly incorporate quarantine is used to
assess the impact of mobility on communities at risk of EVD. It is shown that the
overall EVD burden may lessen when mobility in this artificial high-low risk society is allowed.
The cost that individuals in the low-risk patch must pay, as measured by secondary
cases is highlighted. In Chapter five a model explicitly incorporating patch-specific quarantine
levels is used to show that quarantine a large enough proportion of the population
under effective isolation leads to a measurable reduction of secondary cases in the presence
of mobility. It is shown that sharing limited resources can improve the effectiveness of
EVD effective control in the two-patch high-low risk system. Identifying the conditions
under which the low-risk community would be willing to accept the increases in EVD risk,
needed to reduce the total number of secondary cases in a community composed of two
patches with highly differentiated risks has not been addressed. In summary, this dissertation
looks at EVD dynamics within an idealized highly polarized world where resources
are primarily in the hands of a low-risk community – a community of lower density, higher
levels of education and reasonable health services – that shares a “border” with a high-risk
community that lacks minimal resources to survive an EVD outbreak. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
|
4 |
Terrestrial organic carbon dynamics in Arctic coastal areas : budgets and multiple stable isotope approachesAlling, Vanja January 2010 (has links)
Arctic rivers transport 31-42 Tg organic carbon (OC) each year to the Arctic Ocean, which is equal to 10% of the global riverine OC discharge. Since the Arctic Ocean only holds approximately 1% of the global ocean volume, the influence of terrestrially derived organic carbon (OCter) in the Arctic Ocean is relatively high. Despite the global importance of this region the behavior of the, by far largest fraction of the OCter, the dissolved organic carbon (DOC) in Arctic and sub-arctic estuaries is still a matter of debate. This thesis describes data originating from field cruises in Arctic and sub-arctic estuaries and coastal areas with the aim to improve the understanding of the fate of OCter in these areas, with specific focus on DOC. All presented studies indicate that DOCter and terrestrially derived particulate organic carbon (POCter) are subjected to substantial degradation in high-latitude estuaries, as shown by the non-conservative behavior of DOC in the East Siberian Arctic Shelf Seas (ESAS) (paper I) and the even more rapid degradation of POC in the same region (paper II). The removals of OCter in Arctic shelf seas were further supported by multiple isotope studies (paper III and IV), which showed that a use of 13C/12C in both OC and DIC, together with 34S/32S is a powerful tool to describe the sources and fate of OCter in estuaries and coastal seas. High-latitude estuaries play a key role in the coupling between terrestrial and marine carbon pools. In contrast to the general perception, this thesis shows that they are not only transportation areas for DOCter from rivers to the ocean, but are also active sites for transformation, degradation and sedimentation of DOCter, as well as for POCter. In a rapidly changing climate, the importance of these areas for the coupling between inorganic and organic carbon pools cannot be underestimated. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: In press. Paper 2: Submitted. Paper 4: Manuscript.</p>
|
5 |
Recharge and residence times in an arid area aquiferMüller, Thomas 02 August 2013 (has links) (PDF)
Deteriorating water quality in the face of a rising demand for agricultural products triggered interest in the groundwater resources of the Najd dessert, an arid region of southern Oman. Groundwater in this area usually is abstracted from one of the largest aquifers on the Arabian Peninsula, the Umm Er Radhuma aquifer. Increased discharge stands in contrast to limited precipitation: the monsoon is an annual event but it is regionally limited; cyclones infrequently occur within the range of three to seven years. Both are possible sources for groundwater recharge in the Najd.
With these preconditions in mind, the present study investigates recharge to the Najd groundwaters as part of an active flow system and evaluates the mean residence time in the deep groundwaters. The tools of choice are a groundwater flow model combined with environmental isotope tracer data.
The two-dimensional flow model replicates the characteristics of the aquifer system from the potential recharge area in the south (Dhofar Mountains) to the discharge area in the north (Sabkha Umm as Sammim). The south-to-north gradients and the observed artesian heads in the confined aquifer are reproduced. Simulation results indicate that changes between wet and dry periods caused transient responses in heads and head gradients lasting for several thousand years.
Based on the used parameters the model calibration indicated, that a recharge rate of around 4 mm a−1 is sufficient to reproduce current groundwater levels. Since rising groundwater levels were documented after cyclone Keila in November 2011, modern recharge evidently occurs. 36-Cl concentrations and dissolved-helium concentrations indicate that the deep groundwaters in the central Najd are up to 550,000 years old. Thus, radiocarbon values indicating groundwater residence times for the central Najd up to 20,000 years and the northern Najd up to 35,000 years underestimate the groundwater residence times and seem to have been strongly affected by mixing during sampling. Decreasing 36-Cl and increasing 4-He concentrations confirm the expected trend in the direction of groundwater flow and prove to be more robust tracers for age dating of Najd groundwaters.
Backward pathline tracking was used to simulate the groundwater ages. The tracking results show that a total porosity value between 15 and 20 % is consistent with the range of the observed chlorine-36 and heliumbased ages. The results and parameters obtained in the present study provide the basis for future 3D-groundwater models designed to evaluate the water resources available to the Najd’s agricultural complex. In addition, the developed 2D-model allows for studies of paleoclimate scenarios and their influence on the groundwater regime. / Ein steigender Bedarf nach landwirtschaftlichen Produkten - und damit Wasser - bei gleichzeitiger Abnahme des verfügbaren Wassers in Qualität und Menge in den bisherigen Anbaugebieten, führt zu einer intensiven Nutzung der Grundwasserressourcen der ariden Najd-Region in der Provinz Dhofar, im Süden des Sultanats Oman. Als Quelle dienen die Grundwasservorräte des Umm Er Radhuma-Aquifers, einer der Hauptaquifere auf der arabischen Halbinsel. Der steigenden Nutzung stehen mit dem jährlichen Monsoon, der regional limitiert ist, und unrgelmässigen, zwischen 3 und 7 Jahren auftretenden Unwettern (Zyklonniederschlag) nur begrenzte Niederschlagsmengen als Quellen für eine mögliche Zufuhr von Wasser (Grundwasserneubildung) zum Aquifersystem gegenüber.
Der Ansatz der vorliegenden Arbeit besteht darin, mit Hilfe eines Grundwassermodells und der Einbeziehung von Umweltisotopen das tiefe und zur Nutzung geförderte Grundwasser in der Najd-Region als Teil eines aktiven Fließsystemes zu untersuchen und mittlere Verweilzeiten des Grundwassers abzuleiten. Ein 2D-Grundwassermodell entlang einer Fließlinie vom Dhofar Gebirge im Süden zur Sabkha Umm as Sammim im Nordosten wurde entwickelt. Das Modell reproduziert den Süd-Nord-Gradienten als auch den aufwärts gerichteten Gradienten mit höheren Grundwasserständen in den tiefen Grundwasserleitern. Die Simulationen zeigen, dass der Wechsel von ariden und humiden Phasen (wenig bzw. viel Grundwasserneubildung) zu Veränderungen der Grundwasseroberfläche führt die mehrere tausend Jahre anhalten können. Das kalibrierte Grundwassermodel zeigt, dass mit einer Neubildungsrate von 4 mm a−1 die natürlichen Grundwasserverhältnisse im Najd abgebildet werden können.
Dass eine moderne Grundwasserneubildung stattfindet, konnte mittels Loggermessungen anhand steigender Grundwasserstände im tiefen Aquifersystem nach dem Extremunwetter im November 2011 (Zyklon Keila) eindeutig nachgewiesen werden. Die Analyse der 36Cl- und 4He-Konzentrationen zeigt, dass die tiefen Grundwasser im zentralen Najdgebiet bis 550 000 Jahren alt sein können. Das bedeutet allerdings, dass die über 14C Daten berechneten Grundwasseralter mit ca. 20 000 Jahren für das zentrale Najdgebiet und bis zu 35 000 Jahren für den nördlichen Najd, die Grundwasseralter deutlich unterschätzen. Die abnehmenden 36Cl und ansteigenden 4He Konzentrationen zeigen den erwarteten Trend in Grundwasserfließrichtung und können als aussagefähige Tracer für die Bewertung der Verweilzeiten und Alter des fossilen Grundwassers der Najd-Region angesehen werden.
Mit Hilfe des Partickeltrackings wurden die Grundwasseralter, basierend auf den Isotopentracern, im Grundwassermodel simuliert. Die Porosität wurde dabei für das Aquifesystem mit Werten zwischen 15 und 20 % bestimmt. Die generierten Parameter und das gewonnene Systemverständnis sind eine wichtige Basis für zukünftige 3D-Modellstudien welche die Verfügbarkeit der Wasserresourcen im Najd untersuchen werden. Weitere Anwendungen für das in dieser Studie aufgebaute 2D-Modell sind Untersuchungen zum Paläoklima und dessen Einfluss auf das Grundwassersystem.
|
6 |
Recharge and residence times in an arid area aquiferMüller, Thomas 19 April 2013 (has links)
Deteriorating water quality in the face of a rising demand for agricultural products triggered interest in the groundwater resources of the Najd dessert, an arid region of southern Oman. Groundwater in this area usually is abstracted from one of the largest aquifers on the Arabian Peninsula, the Umm Er Radhuma aquifer. Increased discharge stands in contrast to limited precipitation: the monsoon is an annual event but it is regionally limited; cyclones infrequently occur within the range of three to seven years. Both are possible sources for groundwater recharge in the Najd.
With these preconditions in mind, the present study investigates recharge to the Najd groundwaters as part of an active flow system and evaluates the mean residence time in the deep groundwaters. The tools of choice are a groundwater flow model combined with environmental isotope tracer data.
The two-dimensional flow model replicates the characteristics of the aquifer system from the potential recharge area in the south (Dhofar Mountains) to the discharge area in the north (Sabkha Umm as Sammim). The south-to-north gradients and the observed artesian heads in the confined aquifer are reproduced. Simulation results indicate that changes between wet and dry periods caused transient responses in heads and head gradients lasting for several thousand years.
Based on the used parameters the model calibration indicated, that a recharge rate of around 4 mm a−1 is sufficient to reproduce current groundwater levels. Since rising groundwater levels were documented after cyclone Keila in November 2011, modern recharge evidently occurs. 36-Cl concentrations and dissolved-helium concentrations indicate that the deep groundwaters in the central Najd are up to 550,000 years old. Thus, radiocarbon values indicating groundwater residence times for the central Najd up to 20,000 years and the northern Najd up to 35,000 years underestimate the groundwater residence times and seem to have been strongly affected by mixing during sampling. Decreasing 36-Cl and increasing 4-He concentrations confirm the expected trend in the direction of groundwater flow and prove to be more robust tracers for age dating of Najd groundwaters.
Backward pathline tracking was used to simulate the groundwater ages. The tracking results show that a total porosity value between 15 and 20 % is consistent with the range of the observed chlorine-36 and heliumbased ages. The results and parameters obtained in the present study provide the basis for future 3D-groundwater models designed to evaluate the water resources available to the Najd’s agricultural complex. In addition, the developed 2D-model allows for studies of paleoclimate scenarios and their influence on the groundwater regime. / Ein steigender Bedarf nach landwirtschaftlichen Produkten - und damit Wasser - bei gleichzeitiger Abnahme des verfügbaren Wassers in Qualität und Menge in den bisherigen Anbaugebieten, führt zu einer intensiven Nutzung der Grundwasserressourcen der ariden Najd-Region in der Provinz Dhofar, im Süden des Sultanats Oman. Als Quelle dienen die Grundwasservorräte des Umm Er Radhuma-Aquifers, einer der Hauptaquifere auf der arabischen Halbinsel. Der steigenden Nutzung stehen mit dem jährlichen Monsoon, der regional limitiert ist, und unrgelmässigen, zwischen 3 und 7 Jahren auftretenden Unwettern (Zyklonniederschlag) nur begrenzte Niederschlagsmengen als Quellen für eine mögliche Zufuhr von Wasser (Grundwasserneubildung) zum Aquifersystem gegenüber.
Der Ansatz der vorliegenden Arbeit besteht darin, mit Hilfe eines Grundwassermodells und der Einbeziehung von Umweltisotopen das tiefe und zur Nutzung geförderte Grundwasser in der Najd-Region als Teil eines aktiven Fließsystemes zu untersuchen und mittlere Verweilzeiten des Grundwassers abzuleiten. Ein 2D-Grundwassermodell entlang einer Fließlinie vom Dhofar Gebirge im Süden zur Sabkha Umm as Sammim im Nordosten wurde entwickelt. Das Modell reproduziert den Süd-Nord-Gradienten als auch den aufwärts gerichteten Gradienten mit höheren Grundwasserständen in den tiefen Grundwasserleitern. Die Simulationen zeigen, dass der Wechsel von ariden und humiden Phasen (wenig bzw. viel Grundwasserneubildung) zu Veränderungen der Grundwasseroberfläche führt die mehrere tausend Jahre anhalten können. Das kalibrierte Grundwassermodel zeigt, dass mit einer Neubildungsrate von 4 mm a−1 die natürlichen Grundwasserverhältnisse im Najd abgebildet werden können.
Dass eine moderne Grundwasserneubildung stattfindet, konnte mittels Loggermessungen anhand steigender Grundwasserstände im tiefen Aquifersystem nach dem Extremunwetter im November 2011 (Zyklon Keila) eindeutig nachgewiesen werden. Die Analyse der 36Cl- und 4He-Konzentrationen zeigt, dass die tiefen Grundwasser im zentralen Najdgebiet bis 550 000 Jahren alt sein können. Das bedeutet allerdings, dass die über 14C Daten berechneten Grundwasseralter mit ca. 20 000 Jahren für das zentrale Najdgebiet und bis zu 35 000 Jahren für den nördlichen Najd, die Grundwasseralter deutlich unterschätzen. Die abnehmenden 36Cl und ansteigenden 4He Konzentrationen zeigen den erwarteten Trend in Grundwasserfließrichtung und können als aussagefähige Tracer für die Bewertung der Verweilzeiten und Alter des fossilen Grundwassers der Najd-Region angesehen werden.
Mit Hilfe des Partickeltrackings wurden die Grundwasseralter, basierend auf den Isotopentracern, im Grundwassermodel simuliert. Die Porosität wurde dabei für das Aquifesystem mit Werten zwischen 15 und 20 % bestimmt. Die generierten Parameter und das gewonnene Systemverständnis sind eine wichtige Basis für zukünftige 3D-Modellstudien welche die Verfügbarkeit der Wasserresourcen im Najd untersuchen werden. Weitere Anwendungen für das in dieser Studie aufgebaute 2D-Modell sind Untersuchungen zum Paläoklima und dessen Einfluss auf das Grundwassersystem.
|
7 |
Upscaling nonreactive solute transportLlerar Meza, Gerónimo 29 June 2009 (has links)
This thesis focuses on solute transport upscaling. Upscaling of solute transport is usually required to obtain computationally efficient numerical models in many field applications such as, remediation of aquifers, environmental risk to groundwater resources or the design of underground repositories of nuclear waste. The non-Fickian behavior observed in the field, and manifested by peaked concentration profiles with pronounced tailing, has questioned the use of the classical advection-dispersion equation to simulate solute transport at field scale using numerical models with discretizations that cannot capture the field heterogeneity. In this context, we have investigated the use of the advection-dispersion equation with mass transfer as a tool for upscaling solute transport in a general numerical modeling framework.
Solute transport by groundwater is very much affected by the presence of high and low water velocity zones, where the contaminant can be channelized or stagnant. These contrasting water velocity zones disappear in the upscaled model as soon as the scale of discretization is larger that the size of these zones. We propose, for the modeling solute transport at large scales, a phenomenological model based on the concept of memory functions, which are used to represent the unresolved processes taking place within each homogenized block in the numerical models.
We propose a new method to estimate equivalent blocks, for which transport and mass transfer parameters have to be provided. The new upscaling technique consists in replacing each heterogeneous block by a homogeneous one in which the parameters associated to a memory functions are used to represent the unresolved mass exchange between highly mobile and less mobile zones occurring within the block. Flow upscaling is based on the Simple Laplacian with skin, whereas transport upscaling is based in the estimation of macrodispersion and mass transfer parameters as a result of the interpretation of the r / Llerar Meza, G. (2009). Upscaling nonreactive solute transport [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5848
|
8 |
LIFE IN THE RAIN SHADOW: UNDERSTANDING SOURCES OF RECHARGE, GROUNDWATER FLOW, AND THEIR EFFECTS ON GROUNDWATER DEPENDENT ECOSYSTEMS IN THE PANAMINT RANGE, DEATH VALLEY, CALIFORNIA, USACarolyn L. Gleason (5930639) 16 January 2019 (has links)
<div>
<p>Despite
its location in the rain shadow of the southern Sierra Nevada, the Panamint
Range within Death Valley National Park, CA hosts a complex aquifer system that
supports numerous springs. These springs, in turn, support unique
groundwater-dependent ecological communities. Spring emergences range in
elevation from 2434 m above sea level (within the mountain block) to 77 m below
sea level (in the adjacent basins). Waters were collected from representative
Panamint Range springs and analyzed for environmental isotopes and geochemical
tracers to address the following questions: 1) What is the primary source of
recharge for the springs? How much
recharge occurs on the Panamint Range? 2) What groundwater flowpaths and
geologic units support springflow generation? and 3) What are the residence
times of the springs? The stable isotopic composition (δ<sup>18</sup>O and δ<sup>2</sup>H) of spring
water and precipitation indicate that localized high-elevation snowmelt is the
dominant source of recharge to these perennial springs, though recharge from
rainfall is not wholly insignificant. Geochemical evolution was evaluated using
principle component analysis to compare the concentrations of all major spring
cations and anions in a multidimensional space and group them according to
dominant geochemical signatures. These resulting geochemical groups are controlled
primarily by topography. The Noonday Dolomite and other carbonate units in the
range are identified as the water-bearing units in the mountain block based on
the <sup>87</sup>Sr/<sup>86</sup>Sr of spring
waters and rock samples. These units also offer higher hydraulic conductivities
than other formations and are chemically similar. Radiocarbon- and <sup>3</sup>H derived residence
times of these spring waters range from modern to approximately 1840 years,
with the shortest residence times at higher altitudes and Hanaupah Canyon and
increasing residence times with decreasing altitude. This residence time-altitude
relationship is likewise likely topography-driven though there are significant
disparities in mountain block storage between the various canyons of the range
resulting in variable residence times between drainages. Lower Warm Springs A
and B, however, are the exceptions to this trend as they emerge at lower
altitudes (750m above sea level) and are likely driven by the transport of
groundwater to the surface along faults which increases both the temperature
and groundwater residence times of waters from these springs. Benthic
macroinvertebrates and benthic and planktonic microbes were also sampled for
each spring studied. BMI and microbial community structure in the Panamint Range
is likewise topography-controlled with more tolerant communities at lower
elevations (within more chemically evolved waters) and less tolerant species in
the unevolved waters at higher elevations.</p></div>
|
9 |
Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander ZonesMahmood, Muhammad Nasir 11 May 2021 (has links)
The docotoral thesis titled 'Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander Zones' investigates flow and solute dynamcis across surface water-groundwater interface under dynamic flow conditons through numerical simulations. The abstract of the thesis is as follows: Waters from various sources meet at the interface between streams and groundwater. Due to their different origins, these waters often have contrasting chemical signatures and therefore mixing of water at the interface may lead to significant changes in both surface and subsurface water quality. The riparian zone adjacent to the stream serves as transition region between groundwater and stream water, where complex water and solute mixing and transport processes occur. Predicting the direction and the magnitude of solute exchanges and the extent of transformations within the riparian zone is challenging due to the varying hydrologic and chemical conditions as well as heterogeneous morphological features which result in complex, three-dimensional flow patterns. The direction of water flow and solute transport in the riparian zone typically varies over time as a result of fluctuating stream water and groundwater levels. Particularly, increasing groundwater levels can mobilize solutes from the unsaturated zone which can be subsequently transported into the stream. Such complex, spatially and temporally varying processes are hard to capture with field observations alone and therefore modeling approaches are required to predict the system behavior as well as to understand the role of individual factors. In this thesis, we investigate the inter-connectivity of streamthe s and adjacent riparia zones in the context of water and solute exchanges both laterally for bank storage and longitudinally for hyporheic flow through meander bends. Using numerical modeling, the transient effect of stream flow events on solute transport and transformation within the initially unsaturated part of stream banks and meander bends have been simulated using a systematic set of hydrological, chemical and morphological scenarios. A two dimensional variably saturated media groundwater modeling set up was used to explore solute dynamics during bank flows. We simulated exchanges between stream and adjacent riparian zone driven by stream stage fluctuations during stream discharge events. To elucidate the effect of magnitude and duration of discharge events, we developed a number of single discharge event scenarios with systematically varying peak heights and event duration. The dominant solute layer was represented by applying high solute concentration in upper unsaturated riparian zone profile. Simulated results show that bank flows generated by high stream flow events can trigger solute mobilization in near stream riparian soils and subsequently export significant amounts of solutes into the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased duration significantly enhance solute export, however, peak height is found to be the dominant control for overall lateral mass export. The mobilized solutes are transported towards the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in a theoretically long tailing of bank outflows and solute mass outfluxes. Our bank flow simulations demonstrate that strong stream discharge events are likely to mobilize and export significant quantity of solutes from near stream riparian zones into the stream. Furthermore, the impact of short-term stream discharge variations on solute exchange may sustain for long times after the flow event. Meanders are prominent morphological features of stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange flow through the intrameander region, leading to solute transport and reactions within intra-meander region. We examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady-state and transient flow conditions. In order to explore the impact of meander morphology on intrameander flow, a number of theoretical meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander were developed. Three dimensional steady-state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region for all meander scenarios. The meandering stream was implemented in the model by adjusting the top layers of the modeling domain to the streambed elevation. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. Similar to the bank storage case, a high concentration of solute (carbon source) representing the dominant solute layer in the riparian profile was added in the unsaturated zone to evaluate the effect of stream flow event on mobilization and transport from the unsaturated part of intrameander region. Additionally, potential chemical reactions of aerobic respiration by the entry of oxygen rich surface water into subsurface as well denitrification due to stream and groundwater borne nitrates were also simulated. The results indicate that intra-meander mean residence times ranging from 18 to 61 days are influenced by meander geometry, as well as the size of the intra-meander area. We found that, intra-meander hydraulic gradient is the major control of RTs. In general, larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs), whereas increased meander sinuosity results in shorter MRTs. The vertical extent of hyporheic flow paths generally decreases with increasing sinuosity. Transient modeling of hyporheic flow through meanders reveals that large stream flow events mobilize solutes from the unsaturated portion of intra-meander region leading to consequent transport into the stream via hyporheic flow. Advective solute transport dominates during the flow event; however significant amount of carbon is also consumed by aerobic respiration and denitrification. These reactions continue after the flow events depending upon the availability of carbon source. The thesis demonstrates that bank flows and intra-meander hyporheic exchange flows trigger solute mobilization from the dominant solute source layers in the RZ. Stream flow events driven water table fluctuations in the stream bank and in the intra-meander region transport substantial amount of solutes from the unsaturated RZ into the stream and therefore have significant potential to alter stream water quality.:Declaration
Abstract
Zusammenfassung
1 General Introduction
1.1 Background and Motivation
1.2 Hydrology and Riparian zones
1.2.1 Transport processes driven by fluctuation in riparian water table depth
1.2.1.1 Upland control
1.2.1.2 Stream control
1.2.2 Biochemical Transformations within the Riparian Zone
1.3 Types and scales of stream-riparian exchange
1.3.1 Hyporheic Exchange
1.3.1.1 Small Scale Vertical HEF
1.3.1.2 Large Scale lateral HEF
1.3.2 Bank Storage
1.4 Methods for estimation of GW-SW exchanges
1.4.1 Field Methods
1.4.1.1 Direct measurement of water flux
1.4.1.2 Tracer based Methods
1.4.2 Modeling Methods
1.4.2.1 Transient storage models
1.4.2.2 Physically based models
1.5 Research gaps and need
1.6 Objectives of the research
1.7 Thesis Outline
2 Flow and Transport Dynamics during Bank Flows
2.1 Introduction
2.2 Methods
2.2.1 Concept and modeling setup
2.2.2 Numerical Model
2.2.3 Stream discharge events
2.2.4 Model results evaluation
2.3 Results and discussion
2.3.1 Response of water and solute exchange to stream discharge events
2.3.1.1 Water exchange time scales
2.3.1.2 Stream water solute concentration
2.3.2 Solute mobilization within the riparian zone
2.3.3 Influence of peak height and event duration on solute mass export towards the stream
2.3.4 Effects of event hydrograph shape on stream water solute concentration
2.3.5 Model limitations and future studies
2.4 Summary and Conclusions
Appendix 2
3 Flow and Transport Dynamics within Intra-Meander Zone
3.1 Introduction
3.2 Methods
3.2.1 Meander Shape Scenarios
3.2.2 Surface Water Simulations
3.2.3 3D Groundwater Flow Simulations with Modeling code MIN3P
3.2.3.1 Steady Flow Simulations
3.2.3.2 Stream flow event and Solute Mobilization Set-up
3.2.4 Reactive Transport
3.3 Results and Discussion
3.3.1 Groundwater heads and flow paths in the saturated intrameander
zone
3.3.1.1 Groundwater heads
3.3.1.2 Flow paths and isochrones
3.3.1.3 Vertical extent of flow paths
3.3.2 Intra-Meander Residence Time Distribution
3.3.3 Factors affecting intra-meander flow and residence times
3.3.3.1 intra-meander hydraulic gradient
3.3.3.2 Maximum penetration depth
3.3.3.3 Meander sinuosity
3.3.3.4 intra-meander area (A)
3.3.4 Influence of Discharge Event on intra-meander Flow and Solute Transport
3.3.4.1 Spatial distribution of groundwater head and solute concentration
3.3.4.2 Time scales of intra-meander groundwater heads and solute transport
3.3.4.3 Solute export during stream discharge event
3.3.5 Intra-meander reactive transport during stream discharge event
3.3.5.1 Impact of stream discharge on aerobic respiration and denitrification
3.3.5.2 DOC mass removal during stream discharge event
3.4 Summary and Conclusions
Appendix 3
4 General Summary and Conclusions
4.1 Summary
4.2 Conclusions
4.2.1 Flow and Transport Dynamics in Near Stream Riparian Zone (Bank Flows)
4.2.2 Flow and Transport Dynamics within Intra-Meander Zone
4.3 Model Limitations and Future Studies
Bibliography
Acknowledgement
|
Page generated in 0.0656 seconds