• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 49
  • 29
  • 26
  • 20
  • 19
  • 16
  • 15
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 91
  • 70
  • 70
  • 66
  • 60
  • 56
  • 54
  • 52
  • 51
  • 51
  • 50
  • 47
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

On the improvement of phase noise in wideband frequency synthesizers

Munyai, Pandelani Reuben Mulalo January 2017 (has links)
Wireless communication systems are based on frequency synthesizers that generate carrier signals, which are used to transmit information. Frequency synthesizers use voltage controlled oscillators (VCO) to produce the required frequencies within a specified period of time. In the process of generating frequency, the VCO and other electronic components such as amplifiers produce some unwanted short-term frequency variations, which cause frequency instability within the frequency of interest known as phase noise (PN). PN has a negative impact on the performance of the overall wireless communication system. A literature study conducted on this research reveals that the existing PN cancellation techniques have some limitations and drawbacks that require further attention. A new PN correction technique based on the combination of least mean square (LMS) adaptive filtering and single-loop single-bit Sigma Delta (SD) modulator is proposed. The new design is also based on the Cascaded Resonator Feedback (CRFB) architecture. The noise transfer function (NTF) of the architecture was formulated in way that made it possible to stabilize the frequency fluctuations within the in-band (frequency of interest) by locating its poles and zeros within the unit circle. The new design was simulated and tested on a commercially available software tool called Agilent Advanced Design System (ADS). Simulation results show that the new technique achieves better results when compared with existing techniques as it achieves a 104 dB signal-to-noise (SNR), which is an improvement of 9 dB when compared with the existing technique accessed from the latest publications. The new design also achieves a clean signal with minimal spurious tones within the inband with a phase noise level of -141 dBc/Hz (lower phase noise level by 28 dBc/Hz) when compared with the existing techniques. / Thesis (MEng)--University of Pretoria, 2017. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
242

Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites

Davids, Vernon Pete January 2019 (has links)
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019 / This dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels.
243

Design and Simulation of Microwave Filters Using Non-uniform Transmission Line and Superformula

Zhaoyang Li (8120606) 12 December 2019 (has links)
In this study, a novel and systematic methodology for the design and optimization of lowpass filters (LPFs), and multiorder-bandpass filters (BPFs) are proposed. The width of the LPF signal traces consistently follow Fourier truncated series, and the thickness of the substrate as well. By studying different lengths and other physical constraints, the design meets predefined electrical requirements. Moreover, superformula is used in split ring resonators (SRRs) designs to obtain a BPF response and significant structural compactness. Non-uniform transmission lines, as well as superformula equations, are programmed in MATLAB, which is also used for analytical validations. Traces are drawn in AutoCAD. The substrate of LPF is constructed in Pro/e. Finally, the optimized layouts are imported to Ansys High Frequency Structure Simulation (HFSS) software for simulation and verification. Nonuniform LPFs are optimized over a range of 0-6 GHz with cutoff frequency 3.5 GHz. Superformula implemented multiorder-BPFs are optimized with cutoff frequency of 1.1 GHz.
244

Terahertz Time Domain Spectroscopy Techniques for Antiferromagnets and Metamaterials

Heligman, Daniel Michael January 2021 (has links)
No description available.
245

Zero-Energy Tuning of Silicon Microring Resonators Using 3D Printed Microfluidics and Two-Photon Absorption Induced Photoelectrochemical Etching of Silicon

Larson, Kevin Eugene 17 June 2021 (has links)
This thesis presents a novel method of modulating silicon photonic circuits using 3D printed microfluidic devices. The fluids that pass through the microfluidic device interact directly with the silicon waveguides. This method changes the refractive index of the waveguide cladding, thus changing the effective index of the system. Through using this technique we demonstrate the shift in resonant wavelength by a full free spectral range (FSR) by increasing the concentration of the salt water in the microfluidic device from 0% to 10%. On a 60 μm microring resonator, this equals a resonant wavelength shift of 1.514 nm when the index of the cladding changes by 0.017 refractive index units (RIU), or at a rate of 89.05 nm/RIU. These results are confirmed by simulations that use both analytical and numerical methods. This thesis also outlines the development of a process that uses two-photon absorption(TPA) in silicon to produce a photoelectrochemical (PEC) etching effect. TPA induces free carriers in silicon that then interact with the Hydroflouric Acid (HF) solution that the wafer is submerged in. This interaction removes silicon away from the wafer, which is the etching observed in our experiments. Non-line-of-sight PEC etching is demonstrated. The optical assemblies used in these experiments are presented, as are several of the results of the etching experiments.
246

Fabrication and Characterization of Superconductive Coplanar Waveguide Resonators : Fabrication and Characterization of Superconductive Coplanar Waveguide Resonators

Ergül, Adem January 2009 (has links)
The objective of this thesis is to evaluate a generic process for fabrication and characterization of the Superconductive coplanar waveguide (CPW) resonators. Superconductive CPW resonators with various lengths and shapes are designed to investigate their electrical and magnetic properties as well as resonance properties and sensitivities. In the first part of thesis, two different models are introduced in order to estimate the nonlinear kinetic inductance of a superconducting CPW resonator. The first model is based on Bean critical-state model and the second one is based on current dependence of London penetration depth. The existence of a shift in resonant frequency  of Superconductive CPW resonator caused by a non-linear kinetic inductance is also shown experimentally. Simulations were carried out to estimate the nonlinear kinetic inductance due to the self- induced magnetic field penetration. The rest of the thesis is concerned with development of very smooth Aluminum (Al) thin films with RMS (Root Mean Square) roughness 1~nm and CAD (Computer Aid Design) of superconductive CPW resonators. Experimental investigation of a generic fabrication technique for superconductive CPW resonator is carried out. Many resonators are fabricated with different design parameters, such as centerline or gap width, film thickness and gap capacitors length. The fabrication process is described in detail. Electron Beam Lithography is used to fabricate Nb and Al CPW resonators which are coupled to outer conductors via gap capacitors. We have fabricated GHz frequency CPW resonators with quality factors, Q up 5X10^5.
247

INTEGRATING TRAPPED NEUTRAL ATOMS WITH NANOPHOTONIC RESONATORS FOR A NOVEL QUANTUM SIMULATOR

Brian M Fields (10732308) 04 May 2021 (has links)
<div>Atoms trapped in close proximity to optical resonators provides a powerful tool for exploring atom light interactions and their quantum applications. In this work I will describe the development of a neutral atom quantum simulator that implements trapped cesium atoms which have been localized via optical tweezers in close proximity to the surface of a micro-ring resonator fabricated on the surface of an optical chip. The small separation between the cavity and the atom allows for relatively large atom photon coupling strength g on the order of a few hundred MHz. Coupling multiple atoms to a common nanophotonic mode provides a channel through which atoms can exchange virtual photons for the study of long range spin exchange and other quantum many body models.</div><div></div><div>This platform has proven to be extremely versatile. We have thus far successfully demonstrated our ability to trap and image individual atoms directly above the surface of our photonic chips as well as the ability to extend trapping and imaging to arrays of tweezer traps which can be loaded with one or more atoms with high probability. Due to the simplified fabrication process of our planar geometry photonic chips we have been able to rapidly prototype and evolve our system to facilitate new and improved methods of trapping atoms near the surface of our nanophotonic structure. In the following I will discuss the development of our apparatus, our current progress observing signatures of atom-cavity coupling, and some of our future goals we are approaching.</div>
248

Wireless Power Transfer in Cavity Resonator

Djurberg, Axel, Forsberg, Fredrik, Lind, Anton, Snihs, Ludvig January 2021 (has links)
The purpose of this paper is to achieve wireless power transfer inside a resonating cavity, and thereby apply this to charge batteries. The idea is to convert radio frequency waves into direct current, which can charge the batteries. This was done by creating an LC-antenna, which in turn was connected to a rectifier. A data logger was also built, this to be able to read and log the power within the cavity to examine its power distribution. Because of COVID-19 restrictions, access to laboratory and equipment was limited. Due to this, smaller experiments where performed to make sure that all parts worked as intended before trying to perform tests inside the cavity resonator. The results were varied, some favorable, some not. However, all experiments gave insight and further understanding on the issue. The cavity operations had varied results. The data logger was able to pick up, at most, 7.6 % of the power output by the function generator. However, some problems arose with the rectifier which resulted in it not working for higher frequencies. Though, it was capable of rectifying RF signals at lower frequencies from a function generator, which was used to charge a battery. Consequently, there was no charging of batteries inside the cavity. However, three dimensional wireless power transfer was achieved. With some improvements to the current designs, the main goal could be accomplished
249

Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator

Pham, Thanh Tuong 05 1900 (has links)
This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).
250

Fabrication of suspended plate MEMS resonator by micro-masonry / Fabrication de nanoplaques résonantes à l'aide de la micro-maçonnerie

Bhaswara, Adhitya 25 November 2015 (has links)
L'impression par transfert, une technique utilisée pour transférer divers matériaux tels que des molécules d'ADN, de la résine photosensible ou des nanofils semi-conducteurs, s'est dernièrement révélée utile pour la réalisation de structures de silicium statiques sous le nom de micro-maçonnerie. L'étude présentée ici explore le potentiel de la technique de micro-maçonnerie pour la fabrication de résonateurs MEMS. Dans ce but, des microplaques de silicium ont été transférées sur des couches d'oxyde avec cavités intégrées à l'aide de timbres de polymère afin de créer des structures de type plaques suspendues. Le comportement dynamique de ces structures passives a été étudié sous pression atmosphérique et sous vide en utilisant une excitation externe par pastille piézo-électrique mais aussi le bruit thermomécanique. Par la suite, des résonateurs MEMS actifs, à actionnement électrostatique et détection capacitive intégrés, ont été fabriqués en utilisant des étapes supplémentaires de fabrication après impression. Ces dispositifs ont été caractérisés sous pression atmosphérique. Les facteurs de qualité intrinsèques des dispositifs fabriqués ont été évalués à 3000, ce qui est suffisant pour les applications de mesure à pression atmosphérique et en milieu liquide. Nous avons démontré que, puisque l'adhérence entre la plaque et l'oxyde est suffisamment forte pour empêcher une diaphonie mécanique entre les différentes cavités d'une même base, plusieurs résonateurs peuvent être facilement réalisés en une seule étape d'impression. Ce travail de thèse montre que la micro-maçonnerie est une technique simple et efficace pour la réalisation de résonateurs MEMS actifs de type plaque à cavité scellée. / Lately, transfer printing, a technique that is used to transfer diverse materials such as DNA molecules, photoresist, or semiconductor nanowires, has been proven useful for the fabrication of various static silicon structures under the name micro-masonry. The present study explores the suitability of the micro-masonry technique to fabricate MEMS resonators. To this aim, silicon microplates were transfer-printed by microtip polymer stamps onto dedicated oxide bases with integrated cavities in order to create suspended plate structures. The dynamic behavior of fabricated passive structures was studied under atmospheric pressure and vacuum using both external piezo-actuation and thermomechanical noise. Then, active MEMS resonators with integrated electrostatic actuation and capacitive sensing were fabricated using additional post-processing steps. These devices were fully characterized under atmospheric pressure. The intrinsic Q factor of fabricated devices is in the range of 3000, which is sufficient for practical sensing applications in atmospheric pressure and liquid. We have demonstrated that since the bonding between the plate and the device is rigid enough to prevent mechanical crosstalk between different cavities in the same base, multiple resonators can be conveniently realized in a single printing step. This thesis work shows that micro-masonry is a powerful technique for the simple fabrication of sealed MEMS plate resonators.

Page generated in 0.0466 seconds