• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 49
  • 29
  • 26
  • 20
  • 19
  • 16
  • 15
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 91
  • 70
  • 70
  • 66
  • 60
  • 56
  • 54
  • 52
  • 51
  • 51
  • 50
  • 47
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Silica Microspheres Functionalized  with Self-assembled Nanomaterials

Kandas, Ishac Lamei Nagiub 22 January 2013 (has links)
A major limitation of silica-based high-Q microcavities is the lack of functionalities such as gain, plasmonic resonance, and second-order nonlinearity. Silica possesses third order nonlinearity but cannot produce second order nonlinearity, plasmonic resonances, or fluorescence emission. The key to overcome this deficiency is to develop versatile methods that can functionalize the surface of a silica microsphere with appropriate nanomaterials. The goal of this thesis is to present and characterize an electrostatic self-assembly based approach that can incorporate a large number of functional materials onto the surface of a silica resonator with nanoscale control. We consider several types of functional materials: polar ionic self-assembled multilayer (ISAM) films that possess second order nonlinearities, Au nanoparticles (NPs) that support plasmonic resonances, and fluorescent materials such as CdSe/ZnS core/shell QDs. A major part of this thesis is to investigate the relationship between cavity Q factors and the amount of nanomaterials deposited onto the silica microspheres. In particular, we fabricate multiple functional microspheres with different ISAM film thickness and Au NPs density. We find that the Q factors of these microspheres are mainly limited by optical absorption in the case of the ISAM film, and a combination of optical absorption and scattering in the case of the Au NPs. By controlling the number of polymer layers or the NPs density, we can adjust the Q factors of these functional microspheres in the range of 106 to 107. An agreement between theoretical prediction and experimental data was obtained. The results may also be generalized to other functional materials including macromolecules, dyes, and non-spherical plasmonic NPs. We also study the adsorption of Au NPs onto spherical silica surface from quiescent particle suspensions. The surfaces consist of microspheres fabricated from optical fibers and were coated with a polycation, enabling irreversible nanosphere adsorption. Our results fit well with theory, which predicts that particle adsorption rates depend strongly on surface geometry. This is particularly important for plasmonic sensors and other devices fabricated by depositing NPs from suspensions onto surfaces with non-trivial geometries. We use two additional examples to illustrate the potential applications of this approach. First, we explored the possibility of achieving quasi-phase-matching (QPM) in a silica fiber taper coated with nonlinear polymers. Next, we carry out a preliminary investigation of lasing in a silica fiber coated with CdSe/ZnS core/shell quantum dots (QDs). / Ph. D.
252

Logic and memory devices of nonlinear microelectromechanical resonator / 非線形微小電気機械共振器を用いたロジック及びメモリデバイス

Yao, Atsushi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18990号 / 工博第4032号 / 新制||工||1621(附属図書館) / 31941 / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 引原 隆士, 教授 北野 正雄, 准教授 山田 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
253

Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern / Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors

Betzold, Simon January 2022 (has links) (PDF)
Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. / Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors.
254

Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren / Development of electro-optical devices based on exciton polaritons in semiconductor microresonators

Suchomel, Holger Maximilian January 2022 (has links) (PDF)
Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavitätsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten für die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavitäten. Als erstes wird die Implementierung einer elektrisch angeregten, oberflächenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Dafür wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus beläuft sich auf Q ~ 16.000, während die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensität, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu höheren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Kohärenzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform für die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugehörige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearität in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der Höhe des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugehörige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch geschützten Defektzustandes gezeigt. Dazu gehört vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandlücke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren lässt. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erhöhten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems über die GrossPitaevskii-Gleichung beschrieben. Zusätzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abhängigkeit von der Ladungsträgerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zustände innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den räumlichen Freiheitsgrad der PolaritonZustände zurückgeführt. / Exciton-polaritons (polaritons), hybrid quasi-particles formed by the strong coupling between quantum well excitons and microcavity photons, are promising candidates for the realization of a new generation of nonlinear and integrated electrooptical devices. Compared to photonic or electrical approaches distinguishing advantages of Polaritons are their versatile and tuneable properties that allow electrical excitation and easy manipulation, which is both advantageous for on-chip applications. The present thesis deals with the development, implementation, and improvement of compact electrooptical devices based on exciton-polaritons in semiconductor microcavities. At first the implementation of an electrically driven vertically emitting polariton laser diode, which operates without the need of an applied magnetic field, is presented. For this purpose, the layer structure, quality factor, doping profile and Rabi-splitting of the polariton laser diode is optimized. The final design consists of a high-quality factor Al0.20Ga0.80As/AlAs microcavity (Q ~ 16,000) and features a Rabi-splitting of ~ 11.0 meV. Signatures for polariton condensation under electrical excitation are shown in the processed device. It features a clear nonlinearity in its input-output characteristic, a well-pronounced drop in the emission linewidth and a persisting blueshift above the first threshold with increasing pump-power. On top of that, evidence of the systems coherence properties in the condensed phase is provided directly by utilizing interference spectroscopy. Based on the optimized microcavity structures a process for the electrical excitation of one- and two-dimensional potential landscapes is developed. At first, the linear band structures of polaritonic square as well as honeycomb lattices are studied under electrical injection and compared to the results acquired by optical excitation. The obtained dispersions are reproduced by a tight-binding model. Moreover, the capability of the device to facilitate an electrically induced nonlinear emission is demonstrated. The investigated laser mode at the high symmetry Γ points in the second Brillouin zone, is located at the low energy flatband, as verified by the kagome geometry of the measured mode structure. Subsequent, the results of a one-dimensional SSH chain are presented under electrical excitation. In addition, the properties of a built-in lattice defect, forming a topological protected state in the middle of the S band gap, are investigated, paving the way towards the realization of electrically driven topological polariton lasers. Finally, an electrooptical polariton switch is demonstrated as a prototype of a polaritonic field-effect transistor. Here, an optical generated polariton condensate propagating along a one-dimensional channel is controlled by an electrical gate. The operation of the device relies on the combination of an electrostatic potential trap underneath the contact, and the associated exciton ionization. The switching behaviour is analysed in a qualitative as well as in a quantitative manner and verified by modelling the experimental findings with the Gross-Pitaevskii equation. Furthermore, a pronounced negative differential resistance and a strong bistability is observed in the photocurrent response as a function of the carrier density. This is attributed to competing transitions of trapped condensate modes and thus directly to the spatial degree of freedom of the polariton states, which represents a completely new way to create bistability.
255

DESIGN AND IMPLEMENTATION OF MICROSTRIP MONOPOLE AND DIELECTRIC RESONATOR ANTENNAS FOR ULTRA WIDEBAND APPLICATIONS

Morsy, Mohamed Mostafa 01 December 2010 (has links)
Ultra wide-band (UWB) technology is considered one of the very promising wireless technologies in the new millennium. This increases the demand on designing UWB antennas that meet the requirements of different UWB systems. In this dissertation, different UWB antennas are proposed such as an antenna that covers almost the entire UWB bandwidth, 3.5-11 GHz, as defined by the federal communication commission (FCC). This antenna has a size of 50×40×1.5mm3. Miniaturized worldwide UWB antennas are also introduced. Miniaturized worldwide UWB antennas that have compact sizes of (30×20×1.5) mm3, and (15×15×1.5) mm3 are also investigated. The designed worldwide UWB antennas cover the UWB spectrums defined by the electronic communication committee (ECC), 6-8.5 GHz, and the common worldwide UWB spectrum, 7.4-9 GHz. A system consisting of two identical antennas (transmitter and receiver) is built in the Antennas and Propagation Lab at Southern Illinois University Carbondale (SIUC) to test the coupling properties between every two identical antennas. The performance of that system is analyzed under different ii conditions to guarantee that the transmitted signal will be correctly recovered at the receiver end. The designed UWB antennas can be used in many short range applications such as wireless USB. Wireless USB is used in PCs, printers, scanners, laptops, MP3 players, hard disks and flash drives. A new technique is introduced to widen the impedance bandwidth of dielectric resonator antennas (DRAs). DRA features compactness, low losses, and wideband antennas. Different compact UWB DRAs are investigated in this dissertation. The designed DRAs cover a wide range of frequency bands such as, 6.17-24GHz, 4.23-13.51GHz, and 4.5-13.6GHz. The designed DRAs have compact sizes of 1×1×1.5cm3, 0.9×0.9×1.32cm3, 0.6×0.6×1cm3, and 0.6×0.6×0.9cm3; and cover the following frequency bands 4.22-13.51GHz, 4.5-13.6GHz, 6.1-23.75GHz, and 6.68-26.7GHz; respectively. The proposed DRAs may be used for applications in the X, Ku and K bands such as military radars and unmanned airborne vehicles (UAV).
256

Compact Trench Based Bend and Splitter Devices for Silicon-on-Insulator Rib Waveguides

Qian, Yusheng 13 March 2009 (has links) (PDF)
Bends and splitters are typically the fundamental limiting waveguide components in reducing the size of planar lightwave circuits (PLCs) based on waveguides that have a low core/clad refractive index contrast, such as silicon-on-insulator (SOI) rib waveguides. This dissertation presents a solution to this problem in the form of trench-based bends (TBBs) and trench-based splitters (TBSs). Emphasis is placed on experimental demonstration of these components and their integration into practical devices exhibiting significant size reduction. First, a compact and low loss silicon-on-insulator rib waveguide 90◦ TBB is demonstrated based on an etched vertical interface and total internal reflection (TIR) realized by a trench filled with SU8. The measured loss for TE polarization is 0.32 dB ± 0.02 dB/bend at a wavelength of 1.55 μm, which is the best reported in literature. Next, 90◦ TBSs are reported in which each splitter occupies an area of only 11 μm x 11 μm. These components require fabrication of trenches with a nearly 10:1 aspect ratio. A variety of single TBSs are fabricated having different trench widths. The relative amount of power directed into the transmission and reflection arms of the splitters is measured. The TBS reflection and transmission ratio agrees with three dimensional (3D) finite difference time domain (FDTD) predictions. An 82 nm wide trench filled with index matching fluid is experimentally shown to have a reflection/transmission splitting ratio of 49/51 at a wavelength of 1550 nm. To increase the fabrication yield of TBSs, the splitter angle is modified from 90◦ to 105◦, which permits the trench width to be increased to 116 nm for a 50/50 splitter using SU8 as the trench fill material. The fabrication and measurement of compact 105◦ TBBs and TBSs are reported followed by their integration into 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs). The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 μm x 1600 μm for an output waveguide spacing of 50 μm. Finally, a compact SOI trench-based ring resonator (TBRR) composed of 90◦ TBBs, TBSs, and rib waveguides is demonstrated. A TBRR with a ring circumference of 50 μm occupies an area of 20 x 20 μm. The free spectral range (FSR) is as large as 14 nm. By changing the trench fill material from SU8 (n = 1.57) to index fluid (n = 1.733), the peak wavelength can be shifted ∼2 nm. Fabricated TBSNs and TBRRs demonstrate that large size reductions are possible for devices based on TBBs and TBSs. The net result is bend and splitter configurations with a size that is essentially independent of core/clad refractive index contrast. The approach developed in this dissertation is applicable to a wide range of waveguide material systems that have small core/clad refractive index contrast.
257

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason January 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
258

Integrated Microwave Resonator/antenna Structures for Sensor and Filter Applications

Cheng, Haitao 01 January 2014 (has links)
This dissertation presents design challenges and promising solutions for temperature and pressure sensors which are highly desirable for harsh-environment applications, such as turbine engines. To survive the harsh environment consisting of high temperatures above 1000°C, high pressures around 300 psi, and corrosive gases, the sensors are required to be robust both electrically and mechanically. In addition, wire connection of the sensors is a challenging packaging problem, which remains unresolved as of today. In this dissertation, robust ceramic sensors are demonstrated for both high temperature and pressure measurements. Also, the wireless sensors are achieved based on microwave resonators. Two types of temperature sensors are realized using integrated resonator/antennas and reflective patches, respectively. Both types of the sensors utilize alumina substrate which has a temperature-dependent dielectric constant. The temperature in the harsh environment is wirelessly detected by measuring the resonant frequency of the microwave resonator, which is dependent on the substrate permittivity. The integrated resonator/antenna structure minimizes the sensor dimension by adopting a seamless design between the resonator sensor and antenna. This integration technique can be also used to achieve an antenna array integrated with cavity filters. Alternatively, the aforementioned reflective patch sensor works simultaneously as a resonator sensor and a radiation element. Due to its planar structure, the reflective patch sensor is easy for design and fabrication. Both temperature sensors are measured above 1000°C. A pressure sensor is also demonstrated for high-temperature applications. Pressure is detected via the change in resonant frequency of an evanescent-mode resonator which corresponds to cavity deformation under gas pressure. A compact sensor size is achieved with a post loading the cavity resonator and a low-profile antenna connecting to the sensor. Polymer-Derived-Ceramic (PDC) is developed and used for the sensor fabrication. The pressure sensor is characterized under various pressures at high temperatures up to 800°C. In addition, to facilitate sensor characterizations, a robust antenna is developed in order to wirelessly interrogate the sensors. This specially-developed antenna is able to survive a record-setting temperature of 1300°C.
259

Wavelength Scale Resonant Structures For Integrated Photonic Applications

Weed, Matthew 01 January 2013 (has links)
An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models enables comb-like resonant clusters in systems that otherwise have no such regular resonant landscape (e.g. photonic crystal cavities). Through design, simulation, fabrication and test, the work presented here is a thorough validation for the future potential of coupled-resonator filters in frequency comb laser sources.
260

A miniaturized triple-band antenna based on square split ring for IoT applications

Abdulzahra, D.H., Alnahwi, F., Abdullah, A.S., Al-Yasir, Yasir I.A., Abd-Alhameed, Raed 07 October 2022 (has links)
Yes / This article presents a miniaturized triple-band antenna for Internet of Things (IoT) applications. The miniaturization is achieved by using a split square ring resonator and half ring resonator. The antenna is fabricated on an FR4 substrate with dimensions of (33 × 22 × 1.6) mm3. The proposed antenna resonates at the frequencies 2.4 GHz, 3.7 GHz, and 5.8 GHz for WLAN and WiMax applications. The obtained −10 dB bandwidth for the three bands of the proposed antenna are 300 MHz, 360 MHz, and 900 MHz, respectively. The measured reflection coefficient values of the proposed antenna corresponding to each resonant frequency are equal to −14.772 dB, −20.971 dB, and −28.1755 dB, respectively. The measured gain values are 1.43 dBi, 0.89 dBi, and 1 dBi, respectively, at each resonant frequency. There is a good agreement between the measured and simulated results, and both show an omnidirectional radiation pattern at each of the antenna resonant frequencies that is suitable for IoT portable devices.

Page generated in 0.094 seconds