• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 563
  • 176
  • 123
  • 54
  • 46
  • 38
  • 37
  • 29
  • 20
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 1327
  • 312
  • 185
  • 170
  • 164
  • 161
  • 121
  • 112
  • 110
  • 101
  • 99
  • 87
  • 85
  • 84
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

In-field Built-in Self-test for Measuring RF Transmitter Power and Gain

January 2015 (has links)
abstract: RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). However, this conversion circuitry is subject to similar process, voltage, and temperature (PVT) variations as the DUT and affects the measurement accuracy. So, it is important to monitor BIST performance over time, voltage and temperature, such that accurate in-field measurements can be performed. In this research, a multistep BIST solution using only baseband signals for test analysis is presented. An on-chip signal generation circuit, which is robust with respect to time, supply voltage, and temperature variations is used for self-calibration of the BIST system before the DUT measurement. Using mathematical modelling, an analytical expression for the output signal is derived first and then test signals are devised to extract the output power of the DUT. By utilizing a standard 180nm IBM7RF CMOS process, a 2.4GHz low power RF IC incorporated with the proposed BIST circuitry and on-chip test signal source is designed and fabricated. Experimental results are presented, which show this BIST method can monitor the DUT’s output power with +/- 0.35dB accuracy over a 20dB power dynamic range. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
122

Low-Overhead Built-In Self-Test for Advanced RF Transceiver Architectures

January 2015 (has links)
abstract: Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope and phase signals and the finite envelope bandwidth can create intermodulation distortion (IMD) that leads to violation of spectral mask requirements. Characterization and calibration of these parameters with analytical model would reduce the test time and cost considerably. Hence, a technique to measure and calibrate impairments of the polar transceiver in the loop-back mode is proposed. Secondly, robust amplitude measurement technique for RF BIST application and BIST circuits for loop-back connection are discussed. Test techniques using analytical model are explained and BIST circuits are introduced. Next, a self-compensating built-in self-test solution for RF Phased Array Mismatch is proposed. In the proposed method, a sinusoidal test signal with unknown amplitude is applied to the inputs of two adjacent phased array elements and measure the baseband output signal after down-conversion. Mathematical modeling of the circuit impairments and phased array behavior indicates that by using two distinct input amplitudes, both of which can remain unknown, it is possible to measure the important parameters of the phased array, such as gain and phase mismatch. In addition, proposed BIST system is designed and fabricated using IBM 180nm process and a prototype four-element phased-array PCB is also designed and fabricated for verifying the proposed method. Finally, process independent gain measurement via BIST/DUT co-design is explained. Design methodology how to reduce performance impact significantly is discussed. Simulation and hardware measurements results for the proposed techniques show that the proposed technique can characterize the targeted impairments accurately. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
123

Contributions au contrôle non destructif des composites carbones

Roucaries, Bastien 27 November 2009 (has links) (PDF)
La recherche de défauts dans les matériaux est un sujet complexe et important, en particulier lorsque la sécurité est en jeu comme dans le domaine aéronautique. Cette thèse s’inscrit dans cette problématique et s’organise en deux parties. La première partie est dédié à la détection des défaut dans les composites carbones par trois nouvelles méthodes radiofréquences permettant de détecter, en particulier, les impacts sur les peaux des composites carbones. La deuxième partie est consacrée à la détection des infiltrations d’eau dans les composites alvéolaires par une méthode multiphysique couplant une onde hydraulique non linéaire et une détection par un RADAR CW.
124

Estudio de una Nueva Transición para Acoplamientos Microstrip

Salinas Vejar, Sebastián Andrés January 2007 (has links)
No description available.
125

Switched-model Linearization Technique for RF Power Amplifiers

Mahama, Abdul-Salim January 2017 (has links)
No description available.
126

THE PERFORMANCE TEST OF AN INITIAL iNET-LIKE RF NETWORK USING A HELICOPTER

Ito, Sei, Honda, Takeshi, Tanaka, Toshihisa, Aoyama, Daiki 11 1900 (has links)
Through the use of early iNET-prototype IP Transceiver technology, Kawasaki Heavy Industries, Ltd. (KHI) has been able to communicate with a flight test vehicle. This technology provides a two-way high-capacity communication that has not been achieved with conventional telemetry. KHI has been authorized to use S-band IP Transceivers since 2014 in Japan. Then various communication tests have been performed. Last year we presented the result of the performance test of initial iNET-like RF network using a tethered aerostat at ITC. As the next phase, we have a plan of the test using a helicopter. The test is going to be conducted in September. We will present the results at ITC. This paper describes plans of the test which includes improved data backfill techniques.
127

Design and characterization of a radio receiver for satellite communication

Ollars, Emil January 2021 (has links)
Due to the increase in volume and speed of data transmissions in recent years, the demand for high-speed satellite communication solutions has increased. This thesis investigates the possibility of making a receiver for satellite radio based on an Analog Devices ADC evaluation board. To do this, evaluation boards for each component were acquired and tested individually before connecting them. The system components include an I/Q demodulator, a local oscillator, and an ADC. Using these components a system design for the radio receiver has been proposed, and its performance analyzed. The SNR of the designed system was measured to26 dB. This performance was deemed to be sufficient for a signal using the BPSKmodulation scheme.
128

Investigation of MIM Diodes for RF Applications

Khan, Adnan 05 1900 (has links)
Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non-crystalline structures and have orders of magnitude lower conductivities. Relatively lower resistances of the order of 1 k ohm with a sensitivity of 1.5 V-1 have been obtained through DC testing of these devices. Finally, RF characterization reveals that input impedances in the range of 300 Ω to 25 Ω can be achieved in the low GHz frequencies (from 1-10 GHz). From the rectification measurements at zero bias, a DC voltage of 4.7 mV has been obtained from an incoming RF signal of 0.4 W at 2.45 GHz, which indicates the suitability of these diodes for RF rectenna devices without providing any bias. It is believed that with further optimization, these devices can play an important role in RF energy harvesting without the need to bias them.
129

Quantification of Uncertainty in the Modeling of Creep in RF MEMS Devices

Peter Kolis (9173900) 29 July 2020 (has links)
Permanent deformation in the form of creep is added to a one-dimensional model of a radio-frequency micro-electro-mechanical system (RF-MEMS). Due to uncertainty in the material property values, calibration under uncertainty is carried out through comparison to experiments in order to determine appropriate boundary conditions and material property values. Further uncertainty in the input parameters, in the form of probability distribution functions of geometric device properties, is included in simulations and propagated to the device performance as a function of time. The effect of realistic power-law grain size distributions on the creep response of thin RF-MEMS films is examined through the use of a finite volume software suite designed for the computational modelling of MEMS. It is seen that the use of a realistic height-dependent power-law distribution of grain sizes in the film in place of a uniform grain size has the effect of increasing the simulated creep rate and the uncertainty in its value. The effect is seen to be the result of the difference between the model with a homogeneous grain size and the model with a non-homogeneous grain size. Realistic variations in the grain size distribution for a given film are seen to have a smaller effect. Finally, in order to incorporate variations in thickness in manufactured devices, variation in the thickness of the membrane across the length and width is considered in a 3D finite element model, and variation of thickness along the length is added to the earlier one-dimensional RF-MEMS model. Estimated uncertainty in the film profile is propagated to selected device performance metrics. The effect of film thickness variation along the length of the film is seen to be greater than the effect of variation across the width.
130

New RF coil arrays for Static and Dynamic Musculoskeletal Magnetic Resonance Imaging / Neue RF-Spulen für statische und dynamisch muskuloskelettale Magnetische Resonanz-Bildgebung

Raghuraman, Sairamesh January 2020 (has links) (PDF)
Magnetic Resonance Imaging at field strengths up to 3 T, has become a default diagnostic modality for a variety of disorders and injuries, due to multiple reasons ranging from its non-invasive nature to the possibility of obtaining high resolution images of internal organs and soft tissues. Despite tremendous advances, MR imaging of certain anatomical regions and applications present specific challenges to be overcome. One such application is MR Musculo-Skeletal Imaging. This work addresses a few difficult areas within MSK imaging from the hardware perspective, with coil solutions for dynamic imaging of knee and high field imaging of hand. Starting with a brief introduction to MR physics, different types of RF coils are introduced in chapter 1, followed by sections on design of birdcage coils, phased arrays and their characterization in chapter 2. Measurements, calculations and simulations, done during the course of this work, have been added to this chapter to give a quantitative feel of the concepts explained. Chapter 3 deals with the construction of a phased array receiver for dynamic imaging of knee of a large animal model, i.e. minipig, at 1.5 T. Starting with details on the various aspects of an application that need to be considered when an MR RF array is designed, the chapter details the complex geometry of the region of interest in a minipig and reasons that necessitate a high density array. The sizes of the individual elements that constitute the array have been arrived at by studying the ratio of unloaded to loaded Q factors and choosing a size that provides the best ratio but still maintains a uniform SNR throughout the movement of the knee. To have a minimum weight and to allow mechanical movement of the knee, the Preamplifiers were located in a separate box. A movement device was constructed to achieve adjustable periodic movement of the knee of the anesthetized animal. The constructed array has been characterized for its SNR and compared with an existing product coil to show the improvement. The movement device was also characterized for its reproducibility. High resolution static images with anatomical details marked have been presented. The 1/g maps show the accelerations possible with the array. Snapshots of obtained dynamic images trace the cruciate ligaments through a cycle of movement of the animal's knee. The hardware combination of a high density phased array and a movement device designed for a minipig's knee was used as a 'reference' and extended in chapter 4 for a human knee. In principle the challenges are similar for dynamic imaging of a human knee with regards to optimization of the elements, the associated electronics and the construction of the movement device. The size of the elements were optimized considering the field penetration / sensitivity required for the internal tissues. They were distributed around the curvature of the knee keeping in mind the acceleration required for dynamic imaging and the direction of the movement. The constructed movement device allows a periodic motion of the lower half of the leg, with the knee placed within the coil, enabling visualization of the tissues inside, while the leg is in motion. Imaging has been performed using dynamic interleaved acquisition sequence where higher effective TR and flip angles are achieved due to a combination of interleaving and segmentation of the sequence. The movement device has been characterized for its reproducibility while the SNR distribution of the constructed RF array has been compared with that of a commercially available standard 8 channel array. The results show the improvement in SNR and acceleration with the constructed geometry. High resolution static images, dynamic snapshots and the 3D segmentation of the obtained images prove the usefulness of the complete package provided in the design, for performing dynamic imaging at a clinically relevant field strength. A simple study is performed in chapter 5 to understand the effects of changes in overlap for coil configurations with different loads and at different frequencies. The noise levels of individual channels and the correlation between them are plotted against subtle changes in overlap, at 64 and 123 MHz. SNR for every overlap setup is also measured and plotted. Results show that achieving critical overlap is crucial to obtain the best possible SNR in those coil setups where the load offered by the sample is low. Chapter 6 of the thesis work deals with coil design for high field imaging of hand and wrists at 7 T, with an aim to achieve ultra high resolution imaging. At this field strength due to the increase in dielectric effects and the resulting decrease in homogeneity, whole body transmit coils are impractical and this has led engineers to design local transmit coils, for specific anatomies. While transmit or transceive arrays are usually preferred, to mitigate SAR effects, the spatial resolution obtained is limited. It is shown that a solution to this, with regards to hand imaging, can be a single volume transmit coil, along with high density receive arrays optimized for different regions of the hand. The use of a phased array for reception provides an increased SNR / penetration under high resolution. A volume transmit coil could pose issues in homogeneity at 7 T, but the specific anatomy of hand and wrist, with comparatively less water content, limits dielectric effects to have homogeneous B_1+ profile over the hand. To this effect, a bandpass birdcage and a 12 channel receive array are designed and characterized. Images of very high spatial resolution (0.16 x 0.16 x 0.16 mm3) with internal tissues marked are presented. In vivo 1/g maps show that an acceleration of up to 3 is possible and the EM simulation results presented show the uniform field along with SAR hotspots in the hand. To reduce the stress created due to the 'superman' position of imaging, provisions in the form of a holder and a hand rest have been designed and presented. Factors that contributed to the stability of the presented design are also listed, which would help future designs of receive arrays at high field strengths. In conclusion, the coils and related hardware presented in this thesis address the following two aspects of MSK imaging: Dynamic imaging of knee and High resolution imaging of hand / wrist. The presented hardware addresses specific challenges and provides solutions. It is hoped that these designs are steps in the direction of improving the existing coils to get a better knowledge and understanding of MSK diseases such as Rheumatoid Arthritis and Osteoarthritis. The hardware can aid our study of ligament reconstruction and development. The high density array and transmit coil design for hand / wrist also demonstrates the benefits of the obtained SNR at 7 T while maintaining SAR within limits. This design is a contribution towards optimizing hardware at high field strength, to make it clinically acceptable and approved by regulatory bodies. / Die Magnetresonanztomographie mit Feldstärken bis zu 3 T ist zu einer Standard- Diag-nosemethode für eine Vielzahl von Erkrankungen und Verletzungen geworden. Das hat mehrere Gründe, angefangen von ihrer nicht-invasiven Natur bis hin zu ihrer Fähigkeit,hochaufgelöste Bilder von inneren Organen und Weichteilen zu erhalten. Trotz enormer Fortschritte stellt die MR-Bildgebung bestimmter anatomischer Regionen oder bei bestimmten Anwendungen und Fragestellungen eine besondere Herausforderung dar. Eine dieser Anwendungen ist die MR-Bildgebung am Muskuloskelettalen System (MSK). Die vorliegende Arbeit befasst sich mit einigen schwierigen Fragestellungen innerhalb der MSK-Bildgebung aus aus der Perspektive der Hardware-Entwicklung: mit Spulendesigns für die dynamische Bildgebung des Knies und mit MR-Bildgebung der Hand bei hohen Magentfeldern. Nach einer kurzen Einführung in die MR-Physik werden in Kapitel 1 dann verschiedene Typen von Hochfrequenz-Spulen (HF-Spulen) vorgestellt, gefolgt in Kapitel 2 mit Abhandlungen des Designs von Birdcage-Spulen, Phased Arrays und deren Charakterisierung. Außerdem enthält das Kapitel Messungen, Berechnungen und Simulationen, die im Rahmen dieser Arbeit durchgeführt wurden, um einen quantitativen Eindruck von den erläuterten Konzepten zu vermitteln. Kapitel 3 befasst sich mit dem Aufbau eines Phased-Array-Empfängers für die dynamische Bildgebung des Knies an einem großen Tiermodell (Minipig) bei 1,5 T. Es werden detailliert verschiedene Aspekte erläutert, die bei der Konstruktion eines RF-Arrays berücksichtigt werden müssen. Des Weiteren beschreibt das Kapitel die komplexe Geometrie des Zielbereichs am Knie des Minipigs und die Gründe für ein Array mitvielen Spulenelementen. ...

Page generated in 0.0406 seconds