• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • Tagged with
  • 13
  • 13
  • 9
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization ofthe Rifampin ADP-ribosyl transferase Enzyme

Baysarowich, Jennifer 11 1900 (has links)
<p> The ansamycin antibiotics are unique antibacterial agents that inhibit bacterial DNAdependent RNA polymerase II. Clinical use of this class of antibiotics has primarily been focused on the treatment oftuberculosis using the semi-synthetic rifamycin derivative, rifampin. As drug resistance among different classes of antibiotics continues to rise, there is increased interest in new applications ofrifamycins for diseases other than tuberculosis. Clinical resistance to rifampin has largely been the result of point mutations in the target, RpoB, however chromosomal and transposon mediated enzyme-associated resistance is well documented. As rifamycin antibiotic use becomes more widespread, enzymatic resistance will inevitably become more prevalent. Here we describe the characterization of one of the principle enzymes associated with rifampin inactivation, the rifampin ADP-ribosyl transferase enzyme (ARR). Two chromosomally encoded ARR enzymes from MYcobacterium smegmatis, and Streptomyces coelicolor, and the Tn-encoded ARR-2, widely distributed in Gram negative pathogens, were overexpressed and characterized. These enzymes exhibit comparable, substrate specific steady state kinetic features, and substrate-induced conformational changes that suggest ARR enzymes may demonstrate a preferred order of substrate binding. To gain further insight into the interaction between ARR enzymes and rifampin and NAD+, the three-dimensional crystal structure of ARR from M smegmatis was solved in complex with rifampin. Based on the threedimensional structure of ARRm, an SNl type reaction has been predicted for rifampin ADPribosyl transferase enzymes. This is the first detailed examination of these novel antibioticmodifying enzymes, relevant to their increased use in the clinic. </p> / Thesis / Master of Science (MSc)
2

Etude de la Poly(ADP-ribosyl)ation dans un contexte des cassures double-brins des ADN nucléaire et mitochondriaux chez Drosophila melanogaster / Study of Poly(ADP-ribosyl)ation in response to mitochondrial and nuclear DNA strand breaks, in Drosophila melanogaster model

Ishak, Layal 30 March 2016 (has links)
L’ADN cellulaire qu’il soit nucléaire ou mitochondrial est constamment soumis à l’action de stress d’origine exogène ou même endogène à la base d’altérations plus ou moins profondes de sa structure. Ces modifications chimiques sont très variées et peuvent aller de l’oxydation d’une base aux cassures double-brins de la molécule d’ADN. Ces dernières sont considérées comme les dommages les plus agressifs pour la cellule car peuvent conduire à la perte d’information et donc à la mort cellulaire. Parmi les systèmes de surveillance de la stabilité du génome figure la Poly(ADP-ribosyl)ation (PARylation). Cette modification post-traductionnelle est assurée essentiellement par les protéines PARP et PARG et est caractérisée par l’incorporation des polymères d’ADP ribose (pADPr) sur des protéines cibles. La PARylation constitue un élément clé dans plusieurs voies de maintien de l’intégrité génomique (BER, NHEJ, HR). La PARylation est aussi décrite au niveau de la mitochondrie mais son rôle dans la gestion des DSBs de l’ADNmt n’est pas connu. Le travail, objet de cette thèse, consiste à étudier le rôle de la PARylation dans le cas des DSB au niveau général chez la drosophile et ensuite de comprendre les mécanismes de gestion des DSB mitochondriales et évaluer l’implication de la PARylation dans ce processus. Nos résultats montrent que : (1) le comportement de la PARylation ne varie pas au cours du processus de cassures et de réparation de l’ADN nucléaire, alors que l’expression des ARNm de PARP-I et PARP-II augmente durant la phase de réparation ; (2) les cassures de l’ADN mitochondrial, induites par la bléomycine, entraînent une augmentation du nombre de copies de l’ADNmt. Cette augmentation transitoire de la quantité de l’ADNmt est observée durant la phase des dommages et retourne à la valeur initiale durant la phase de la réparation. Ce comportement semble être régulé par PARP. L’ensemble de ces résultats suggère que la réparation des DSBs est indépendante de la PARylation au niveau nucléaire mais que la présence de PARP est importante. De plus, PARP semble avoir un rôle dans la régulation de la réplication de l’ADNmt en réponse à un stress génotoxique. / Both nuclear and mitochondrial DNA alterationsarise following exposure to environmental and endogenous stresses. These genomic alterations are various, ranging from base oxidation to DNA strand breaks, single- and double-strand breaks. These damages are highly detrimental to the cell because they can lead to loss of genetic information and thus to cell death. However, cells have developed various mechanisms to counteract this biological issue and to lead up to a complex DNA damage response (DDR). The Poly (ADP- ribosyl) ation (PARylation) is among these DDR systems. This post-translational modification is mainly carried out by PARP and PARG proteins and is characterized by the incorporation of polymers of ADP-ribose on target proteins. The majority of the PARylationfunctions are related to cellular stress response, particulary in response to genomic damages where it is implicated in many DNA integrity pathways such as Base Excision Repair, Non Homologous End Joining and Homologous Recombination. In contrast to the nucleus, PARylation is also described in the mitochondria but its role in mtDNA integrityis still a heavily debate issue, particularly in case of mtDNA DSBs.To understand it, we used Drosophila model wherePARP-B isoform (human PARP-1 ortholog) is the only enzymatically active form in Drosophila PARP family. The aim of this thesis is to study the role of PARylation in response to DSBs induction in nucleus and mitochondrial DNAand then to understand the mechanisms involved in mtDNA integrity and to evaluate the role of PARylation in this process. Our results show that PARylation level remains stable during DSBs induction and also during repair process,contrary to what is shown in Human cells.However, PARP-I and PARP-II mRNA expression increase during repair period. In mitochondria compartment,our data show an increase of mtDNA copy number in presence of mtDNA DSBs. This increased level returns to normal during repair period and seems to be dependent on PARP. All these results suggest that DSBs repair is PARylation independent at the nuclear level but that the presence of PARP is important. In addition, PARP appears to have a role in the regulation of mtDNA replication in response to genotoxic stress.
3

Réparation par excision de base au niveau mitochondrial chez la drosophile. Analyse d'un acteur potentiel de ce processus : la protéine PARP / Repair by basic excision at the mitochondrial level in Drosophila. Analysis of a potential actor in this process : the PARP protein

Cruz-Rodriguez, Luis 17 December 2013 (has links)
Les mitochondries sont des organites essentiels pour la production d'énergie cellulaire grâce à la synthèse d'ATP au cours des étapes de phosphorylations oxydatives (OXPHOS). Les complexes de la chaine respiratoire sont en partie codés par le génome mitochondrial (ADNmt), dont la structure est très sensible aux facteurs exogènes ou endogènes. De nombreuses mutations de l'ADNmt sont associées à des dysfonctionnements de la chaine respiratoire conduisant à des pathologies. La production d’Espèces Oxygénées Réactives (EOR) mitochondriale est la principale source de dommages à l’ADNmt. Une voie de réparation particulière, le système de réparation par excision de bases (BER) est mis en oeuvre dans ce cas. Nous avons, au cours de notre étude, analysé le système BER mitochondrial chez la drosophile. Dans une première approche, nous avons caractérisé de manière globale par une technologie de puces à ADN un ensemble de glycosylases et endonucléases impliquées dans la voie BER mitochondriale et comparé leur variation au cours du vieillissement. Cette étude a été complétée par une analyse transcriptionnelle sur des modèles de drosophiles mutantes pour des enzymes spécifiques de la voie BER, ceci afin de déterminer les éventuelles interactions transcriptionnelles entre les acteurs de cette voie. L’ARNm de Parp présentait de fortes variations dans les différents contextes mutants testés. C’est une molécule essentielle de la réparation BER. Elle a fait l’objet dans un deuxième temps, d’une étude plus approfondie. Dans le modèle des cellules S2, PARP bien que majoritairement nucléaire est également présent dans la mitochondrie. Le comportement différentiel des deux variants ARNm de Parp a pu être mis en évidence lors de stress cellulaires. Les isoformes protéiques de PARP observées dans nos études apparaissent différentes de celles habituellement décrites dans la littérature. Cet aspect a été discuté. / Mitochondria are key organelles mainly devoted to energy production through ATP synthesis. Such a function is permitted by oxidative phosphorylation (OXPHOS) within mitochondria inner membrane. Key components of the OXPHOS processes are encoded by mitochondrial DNA (mtDNA) that is particularly sensitive to exogenous or endogenous insults. As a result, mtDNA mutations are often correlated with OXPHOS dysfunction leading to diseases. ROS production in mitochondria is the main source of mtDNA damage. Such DNA damages are mainly taken over by BER systems within mitochondria. In this study, we focused on this peculiar mitochondrial DNA repair system in Drosophila. In a first step, we analysed in a comprehensive manner through microarray, most glycosylases and endonucleases involved in mitochondrial BER and compared their evolution during aging. Using mutant flies for specific BER enzymes, we started to decipher some of the transcriptional interactions between key BER actors. In a second step, Parp molecule was further studied due its changes in all mutant contexts and for its importance in several cellular processes. We described its nuclear but also its mitochondrial location in S2 cells. Interestingly, two Parp mRNA variants were observed showing distinct regulations following stress induction. However, PARP protein isoforms observed in this study were different compared to what was described in literature. This discrepancy is discussed.
4

ADP-ribosyl-acceptor Hydrolase 3 (ARH3): Structural and Biochemical Insights into Substrate Specificity, Metal Selectivity, and Mechanism of Catalysis

Pourfarjam, Yasin 29 September 2021 (has links)
No description available.
5

Approach for Identification of Binding Proteins of Calcium Mobilizing Second Messengers: NAADP and cADPR

Andy, Divya 21 December 2018 (has links)
No description available.
6

Characterization of Tankyrase Structure & Function; Evidence for a Role as a Master Scaffolding Protein

De Rycker, Manu 23 May 2005 (has links)
No description available.
7

Rôle de la Poly(ADP-Ribose) polymérase 3 (PARP3) dans la différenciation des cellules souches du muscle squelettique chez la souris / Role of Poly(ADP-Ribose) polymerase 3 (PARP3) in the differentiation of skeletal muscle stem cells in mice

Martin-Hernandez, Kathline 13 November 2018 (has links)
La poly(ADP-ribosyl)ation est une modification post-traductionnelle de protéines catalysée par les Poly(ADP-ribose) polymérases (PARPs, 17 membres). Depuis 2011, le laboratoire décortique les propriétés biologiques de PARP3 qui est désormais bien décrite pour son rôle dans la réparation des cassures double-brin de l’ADN, la mitose et la transition épithélio-mésenchymateuse. Ces recherches combinées aux données de la littérature semblent indiquer que les fonctions de PARP3 sont très étendues et participent aussi à des processus physiologiques. Ainsi, mes travaux de thèse révèlent une nouvelle fonction clé de PARP3 dans la différenciation des cellules souches neurales et musculaires. Nous avons observé une forte augmentation de l’expression de PARP3 au cours de la neurogénèse, la gliogenèse et la myogénèse. En l’absence de PARP3, la différenciation des cellules souches neurales (NSPC) en astrocytes et neurones est perturbée et les souris PARP3KO présentent une incapacité à régénérer le tissu cérébral au niveau du striatum après ischémie hypoxique. Concernant les cellules musculaires, la disruption de PARP3 (Crispr/Cas9) empêche toute différenciation des myoblastes C2C12 en myotubes et conduit à une désoganisation du cytosquelette, une dégénérescence mitochondriale et une répression de gènes de l’identité. La réexpression de PARP3 catalytiquement active restaure la capacité de différenciation des C2C12. Enfin, nous avons identifié de nouvelles protéines cibles de PARP3 qui permettent de suspecter un rôle dans l’autophagie et le métabolisme énergétique au cours de la différenciation cellulaire. L’ensemble de ces résultats nous ont permis de découvrir que PARP3 a un rôle central dans la différenciation cellulaire et d’ouvrir de solides pistes de recherche afin d’identifier les mécanismes mis en jeu. / Poly (ADP-ribosyl)ation is a post-translational modification of proteins catalysed by Poly (ADP-ribose) polymerases (PARPs, 17 members). Since 2011, the laboratory has been dissecting the biological properties of PARP3 which is now well described for its role in the repair of DNA double-strand breaks, in mitosis and in epithelial-mesenchymal transition. This investigation combined with data from the literature suggests that PARP3 functions are very wide and could participate in physiological processes. Thus, my thesis work reveals a new key function of PARP3 in neural and muscular stem cell differentiation. We observed a strong increase in PARP3 expression during neurogenesis, gliogenesis and myogenesis. In the absence of PARP3, the differentiation of neural stem cells (NSPCs) into astrocytes and neurons is impaired and PARP3KO mice display an inability to regenerate brain tissue in the region of the striatum after hypoxic ischemia. Regarding muscle cells, PARP3 disruption (Crispr/Cas9) prevents C2C12 myoblast differentiation into myotubes and leads to cytoskeleton disorganisation, mitochondrial degeneration, and repression of identity genes. The reexpression of a catalytically active PARP3 restores the C2C12 differentiation capacity. Finally, we have identified new PARP3 target proteins that suggest a role in autophagy and energetic metabolism during cell differentiation.Together, these results reveal that PARP3 has a central role in cell differentiation and opens solid lines of research to identify the mechanisms involved.
8

ROLE DU NAADP ET DE SON ENZYME DE SYNTHESE, L'ADP RIBOSYL CYCLASE, DANS LES NEURONES : LA REGULATION DE L'HOMEOSTASIE CALCIQUE NUCLEAIRE.

Bezin, Stéphanie 20 December 2007 (has links) (PDF)
Le calcium est un second messager impliqué dans la plupart des fonctions neuronales et possède un rôle particulièrement important dans la régulation de l'expression génique. Pour activer l'expression de certains gènes, une augmentation de la concentration calcique au sein du noyau est essentielle. L'augmentation du calcium intracellulaire dépend entre autre, de la mobilisation du calcium contenu dans les stocks intracellulaires par des seconds messagers comme l'IP3, le cADPR et le NAADP, plus récemment découvert. Au cours de ma thèse, j'ai montré que dans les neurones d'aplysies, l'Aplysia ADP ribosyl cyclase, l'enzyme de synthèse du cADPR et du NAADP migrait dans le noyau suite à la dépolarisation et à l'entrée de calcium par les canaux voltage dépendants de type L. De plus, grâce à la microscopie confocale et l'utilisation de sondes calciques fluorescentes, nous avons observé sur des noyaux de neurones isolés, que les seconds messagers étaient capables de mobiliser le calcium contenu dans l'enveloppe nucléaire pour générer des oscillations calciques nucléoplasmiques. Nos données pharmacologiques montrent que le NAADP active un récepteur qui lui est propre et que ce dernier coopère avec les RyRs et IP3R pour générer ces signaux. Finalement, afin d'explorer les rôles du NAADP dans la physiologie du neurone entier, j'ai mis au point un modèle de neurones spinaux embryonnaire de souris. Les résultats préliminaires nous permettent de poser de nouvelles hypothèses concernant l'implication du NAADP dans certaines grandes fonctions neuronales régulées par les neurotrophines.
9

Developing 1,2,3,4-tetrahydro-5H-aryl[1,4]diazepin-5-ones and Related Scaffolds as Poly-(ADP-ribosyl) Polymerase (PARP) Inhibitors and Exploring Their Targeted Polypharmacology with Kinases

Sulier, Kiaya Minh-Li 08 June 2017 (has links)
Poly-(ADP-ribsoyl) Polymerases (PARPs) are a superfamily of enzymes comprised of 17 known isoforms. PARP inhibitors (PARPi) have shown success in clinical trials for the treatment of homologous recombination-deficient cancers. Though proven effective initially, tumors treated with PARPi eventually develop resistance. Combinatorial therapeutics targeting PARP and other pathways that may re-sensitize tumors to PARP inhibition, including PI3K/AKT/mTor pathway, and cell-cycle checkpoints (such as CDKs, CHK, and Wee) are being tested. In this context, the synthetic lethality of cyclin-dependent kinase 1 (CDK1) and PARP1 is known. Evaluation of PARP1 and CDK1 pharmacophores led to the development of the tetrahydro-arylazepinone (TAAP) scaffold as a potential dual PARP1/CDK1 inhibitor. We screened a handful of TAAP analogs against PARP1 in a cell-free assay that identified the low micromolar PARP1 inhibitor 1,2,3,4-tetrahydro-5H-benzo[e][1,4]-diazepin-5-one (TBAP), which served as the lead compound. The analogous 1,2,3,4-tetrahydro-5H-pyrido[2,3-e][1,4]-diazepin-5-one (TPAP) series showed a similar bioactivity profile. Satisfyingly, the N1-benzyl TPAP analogue showed activity in the low nanomolar range. The TAAP series (i.e., 6/7-membered scaffold) unfortunately lacked CDK1 inhibitory activity. Finally, many PARPi's show poor isoform-selectivity. The development of isoform-selective PARPi can clarify the specific function of each PARP isoform and may reduce the adverse side effects shown by PARPi. A handful of TAAP analogs were screened against 13 PARP isoforms, where some compounds demonstrated exquisite PARP1/2 selectivity. Concurrently, we discovered an inhibitor for PARP11, an isoform that lacks any known synthetic ligand. Future directions are suggested towards fine-tuning the structure-activity relationship of TAAP-isoform selective PARPi as well as developing a dual PARP1/CDK1 inhibitor. / Master of Science / The aim of this work is to explore the therapeutic potential of poly-(ADP-ribosyl) polymerase inhibitors (PARPi) for the treatment of ovarian and breast cancer, specifically triple negative breast cancer. Poly-(ADP-ribsoyl) Polymerases (PARPs) are a superfamily of enzymes comprised of 17 known isoforms. Currently, there are three FDA approved PARPi - olaparib, isoforms. Further, tumors have been shown to develop resistance to PARPi. Herein, we explored the 1,2,3,4-tetrahydro-5H-aryl[1,4]diazepin-5-one scaffold as a potential PARP1/2-selective rucaparib, and niraparib; however, these PARPi demonstrate non-selectivity amongst the PARP inhibitor and its possibility for targeted pharmacology with other kinases.
10

Studies of the metal binding properties and DNA recognition mode of the unusual zinc fingers in poly(ADP-ribose) Polymerase-1 and the investigation of its interaction with apoptosis inducing factor (AIF)

Zhou, Ying, 1977- 04 November 2013 (has links)
Poly(ADP-ribosyl)ation, a covalent modification of proteins catalyzed by poly(ADP-ribose) polymerases (PARPs), plays a crucial role in regulating DNA repair, DNA replication, and cell death. Poly(ADP-ribose) Polymerase-1 (PARP-1) is a nuclear zinc-finger DNA-binding protein that is the most extensively studied member of the PARP family. The activation of PARP-1 depends on the N-terminal DNA-binding domain, which consists of two unusually long zinc finger-like motifs (termed FI and FII) of the form CX₂CX₂₈/₃₀HX₂C and a newly discovered zinc-ribbon motif (FIII). Though zinc is indispensible for PARP-1 activity, the metal binding affinities of the unusual zinc fingers of PARP-1 is not yet known. In this dissertation, the second zinc finger of PARP-1 was used as a model peptide to study the binding properties of several divalent metal ions (Co²⁺, Cd²⁺, Zn²⁺, and Pb²⁺). Metal-induced protein folding was investigated by circular dichroism, and the effects of the metal ions on PARP-1 activity were investigated by poly(ADP-ribosyl)ation activity assays. This study represents the first detailed biochemical characterization of the PARP zinc fingers. The functional role of each zinc finger in DNA damage recognition is critical for understanding how PARP-1 is involved in DNA repair. Thus, we constructed a series of PARP-1 zinc finger variant proteins and investigated their DNA binding properties and their effects on PARP activity. Using a combination of southwestern blotting and activity assays, we demonstrated that FII is more important for DNA binding, while FI and FIII seem to facilitate PARP activity. The DNA sequence-independent binding properties of PARP-1 were further characterized using DNA probes bearing defined secondary structures. Together, our results indicate that the zinc fingers help position the enzyme at specific DNA damage sites, and also help to activate the catalytic domain upon DNA binding. PARP-1 is involved in caspase-independent apoptosis, and the translocation of apoptosis inducing factor (AIF) out of the mitochondrial matrix has been shown to require PARP-1 activity. However, it is not readily apparent how the catalytic activity of PARP-1 (a nuclear protein) triggers the release of AIF from the mitochondrial matrix. In an attempt to understand the relationship between PARP-1 activity and caspase-independent apoptosis, we demonstrate here that AIF is an in vitro protein substrate for PARP-1. The possible implications of this finding will be discussed. / text

Page generated in 0.0391 seconds