Spelling suggestions: "subject:"apyrase"" "subject:"gyrase""
1 |
Caractérisation moléculaire de la tankyrase chez le nématode caenorhabditis elegans /Gravel, Catherine. January 2003 (has links)
Thèse (M.Sc.)--Université Laval, 2003. / Bibliogr.: f. 72-87. Publié aussi en version électronique.
|
2 |
Structure-activity studies on inhibitors of the tankyrasesKumpan, Katerina January 2014 (has links)
Tankyrases-1 and -2 (TNKS-1 and -2) are members of the poly(ADP-ribose)polymerase (PARP) enzyme superfamily, which modify and regulate target proteins by addition of multiple (ADP-ribose) units from the substrate NAD+. TNKS-1 and -2 have many cellular roles, including regulation of elongation of telomeres, activation of nuclear mitotic apparatus protein (NuMA) in mitosis and regulation of the Wnt signalling pathway. This makes the tankyrases attractive new targets for design and development of new anti-cancer drugs. 2-(4-Trifluoromethylphenyl)-7,8-dihydro-3H-thiopyranopyrimidin-4-one (XAV939) was one of the few active inhibitors of tankyrases reported until 2013. The aim of this project was to explore the structure-activity relationships towards enhancing potency and selectivity by replacing the saturated sulfur-containing ring with saturated and unsaturated nitrogen heterocycles and by varying the aromatic side-chain. Firstly, ascorbate-modified Sonogashira couplings of bromocyanopyridines and a variety of 4-substituted arylethynes, followed by acidic cyclisation and conversion of the lactone into the lactam, gave differently substituted arylnaphthyridinones. The alternative route used transition-metal-free reaction of bromopyridinecarboxylic acids with symmetrical β-diketones. 7-Phenyl-1,6-naphthyridin-5-one and 7-(4-methylphenyl)-1,6-naphthyridin-5-one were converted to the N1-oxides. Alkylation at 1-N gave 7-aryl-1-methyl-5-oxo-5,6-dihydro-1,6-naphthyridin-1-ium iodides and subsequent reduction gave saturated target 7-aryl-1-methyl-1,2,3,4-tetrahydro-1,6-naphthyridin-5-ones. Other target compounds included pyridopyrimidinones, which were prepared from the corresponding bromopyridinecarboxylic acids by a copper-catalysed reaction with 4-substituted benzamidines. Target tetrahydropyridopyrimidinones, however, were obtained from condensation of 1-benzyl-4-oxopiperidine-3-carboxylic esters with substituted benzamidines. All compounds were evaluated in vitro for inhibition of the catalytic activity of TNKS-2. The best compounds were investigated further, including in vitro TNKS-1 and PARP-1 inhibition and anti-proliferative studies on HT29 and FEK4 cell lines. Notably, 1-methyl-7-(4-trifluoromethylphenyl)-1,2,3,4-tetrahydro-1,6-naphthyridin-5-one and 1-methyl-7-(4-methoxyphenyl)-1,2,3,4-tetrahydro-1,6-naphthyridin-5-one showed 50% inhibition of TNKS-2 at 1.5 nM and 1.1 nM, respectively, showing also high selectivity (IC50 against PARP-1: 4.8 μM and 3.4 μM, respectively). This high potency and selectivity point to potential for development towards therapeutic use in cancer. A patent covering these discoveries has been filed.
|
3 |
Migration cellulaire : identification d'Arpin, un nouvel inhibiteur du complexe Arp2/3, et mécanismes moléculaires de sa régulation / Cell migration : identification of Arpin, an novel inhibitor of the Arp2/3 complex and molecular mecanisms of its regulationDang, Irene 19 September 2014 (has links)
Dans une cellule en migration, la polymérisation d'actine permet de projeter la membrane plasmique dans une structure appelée le lamellipode. Dans le lamellipode, l'actine est polymérisée de manière branchée par le complexe Arp2/3. L'activation du complexe Arp2/3 au lamellipode est sous le contrôle du complexe WAVE. En réponse à une cascade d’activation moléculaire, une des sous-unités du complexe WAVE expose son domaine WCA (WH2-Connecteur-Acide) qui peut alors se lier au complexe Arp2/3 et l’activer afin d'initier la formation d’un nouveau filament d’actine. La voie d’activation du complexe Arp2/3 par le complexe WAVE a été bien étudiée. Cependant la migration cellulaire est finement régulée et cette unique voie de signalisation nous semblait insuffisante. Dans le but de trouver de nouveaux régulateurs de la migration et en particulier de nouvelles protéines se liant au complexe Arp2/3, nous avons réalisé un crible bioinformatique identifiant les protéines contenant un motif Acide. Ce dernier a abouti à l’identification d’une protéine non caractérisée. In vitro, cette protéine n'active pas le complexe Arp2/3. En revanche, elle est capable d'inhiber l'activation du complexe Arp2/3 induite par le domaine WCA d'un activateur et empêche la formation de branches par le complexe Arp2/3. Nous avons appelé cette nouvelle protéine Arpin pour « Arp2/3 Inhibitor ». De manière cohérente avec son rôle inhibiteur in vitro, la déplétion d'Arpin dans différents type de cellules, induit une augmentation de la vitesse de protrusion des lamellipodes et une demi-vie augmentée des lamellipodes. Ces effets se traduisent par une migration plus rapide et plus persistante en direction. Arpin joue donc le rôle d'un frein de la migration cellulaire et permet à la cellule de tourner. Pour jouer ce rôle-là, Arpin nécessite d’être régulée rigoureusement. Dans la cellule, Arpin est inactive et nécessite d’être activée par Rac. Cependant cette régulation n'est probablement pas directe. Pour mieux comprendre la régulation d'Arpin, nous avons donc recherché des protéines partenaires. Nous avons identifié Tankyrase comme protéine interagissant avec Arpin. De façon significative, le motif d’Arpin qui permet son interaction avec Tankyrase se superpose à la séquence Acide nécessaire à son interaction avec le complexe Arp2/3. Nous avons mis en évidence in vitro une compétition entre Tankyrase et le complexe Arp2/3 sur Arpin. Ces résultats suggèrent Tankyrase inhibe la protéine inhibitrice Arpin. En conclusion, nous avons découvert une nouvelle protéine Arpin, qui inhibe le complexe Arp2/3 et qui joue un rôle régulateur important dans la migration cellulaire. Nous avons identifié une protéine régulatrice de son activité, la Tankyrase. Nous nous attendons à ce qu’Arpin soit impliquée dans des nombreux processus physiologiques ou pathologiques, où la migration cellulaire joue un rôle important, en particulier lors de la formation de métastases dans le cancer. / In migrating cells, the Arp2/3 complex generates branched actin networks that power protrusion of the leading edge in a structure called lamellipodium. The Arp2/3 complex is activated at the leading edge by the Wave complex which is itself activated by the small GTPase Rac. WAVE which is in an inactive state, then exposes its WCA domain (WH2-Connector-Acidic) that can bind to the Arp2/3 complex and activate it to trigger the formation of a new daughter actin filament. This signalling pathway of the Arp2/3 complex has been well studied. However, cell migration is a fine-tuned process that is probably regulated in a more complex manner.To identify new regulators of cell migration, especially proteins that bind to the Arp2/3 complex, we performed a bioinformatics screen to identify proteins containing an acidic motif at its C-terminus, a characteristic motif of Arp2/3 activators. By this method we retrieved an uncharacterized protein. A combination of in vitro assays revealed, however, that this protein inhibits the Arp2/3 complex by competing with the activators. We called this protein Arpin for “Arp2/3 inhibitor”. Depletion of Arpin in different kind of cells, such as mammalian cells or amoeba, induces lamellipodia to protrude faster and to last longer, consistent with its inhibitory role on Arp2/3 complex activity. These effects observed lead to an increased velocity and a more directional migration in random migration assay. The function of the Arp2/3 inhibitory protein Arpin is thus to slow down and steer cell migration.In the cell, Arpin has been shown to be inactive until it is activated by Rac, most likely by an indirect manner. We identified Tankyrase as an interactor of Arpin. Interestingly, the binding motif of Arpin to Tankyrase overlaps the acidic motif required for the binding to the Arp2/3 complex. By a biochemistry approach, we showed a competition between Tankyrase and the Arp2/3 complex for the binding to Arpin. This observation suggests that Tankyrase inhibits the inhibitory protein Arpin in the cell. To conclude, we identified a new protein, Arpin which inhibits the Arp2/3 complex and plays an important role in the control of cell migration. We identified a protein which regulated its activity, Tankyrase. Thus, we can imagine that Arpin could be implicated in numerous physiological and pathological processes where cell migration is involved, particularly during metastases formation in cancer
|
4 |
Characterization of Tankyrase Structure & Function; Evidence for a Role as a Master Scaffolding ProteinDe Rycker, Manu 23 May 2005 (has links)
No description available.
|
5 |
Effect of long-term ultra-endurance training on telomere length and telomere regulatory protein expressions in vastus lateralis of healthy humans.Östlund-Lagerström, Lina January 2010 (has links)
No description available.
|
6 |
A structural and functional analysis of the human tankyrase enzymeKuate Defo, Alvin 06 1900 (has links)
Les poly(ADP-ribose) polymérases (PARP) sont des enzymes qui modifient les protéines ou l’ADN par ADP-ribosylation à l’aide du nicotinamide adénine dinucléotide (NAD+). Tankyrase est une PARP qui régule divers processus cellulaires, tels que la maintenance des télomères, la signalisation Wnt et le traitement de l’ARN. Elle est constituée de groupes de répétitions d’ankyrine (ARC) N-terminaux qui se lient aux protéines substrats, d’un domaine de motif α stérile intermédiaire qui médie la polymérisation avec d’autres molécules de tankyrase et d’un domaine catalytique C-terminal. Étant donné que l’activité de la tankyrase favorise la signalisation pro-oncogène Wnt/β-caténine, des inhibiteurs sous forme de petites molécules ont été développés pour cibler son domaine catalytique et se sont révélés prometteurs pour le traitement du cancer colorectal. Certaines protéines se lient à la tankyrase, mais plutôt que d’être ciblées pour l’ADP-ribosylation, elles inhibent son activité catalytique. Ces partenaires de liaison comprennent la GDP-mannose 4,6-déshydratase (GMD) et le gène 4 associé à la prostate (PAGE4). Il est important de noter que la structure de l’enzyme tankyrase complète n’a pas encore été déterminée, et on ignore actuellement pourquoi certaines protéines qui se lient à la tankyrase sont modifiées par l’ADP-ribose, tandis que d’autres restent inchangées et inhibent plutôt son activité catalytique. Comprendre ce mécanisme d’inhibition par analyse structurale pourrait fournir de nouvelles voies thérapeutiques bloquant la signalisation Wnt/β-caténine en ciblant le domaine N-terminal de la tankyrase. Notre objectif était d’utiliser la microscopie à coloration négative et la cryomicroscopie électronique pour déterminer les structures de la tankyrase seule et en complexe avec GMD et PAGE4. Nous avons observé que la tankyrase 1 s’assemble en double hélice lors de la polymérisation, créant des contacts interdomaines susceptibles de faciliter ses rôles catalytiques et d’échafaudage dans la signalisation cellulaire. De plus, GMD compactée et ARC1–5 de la tankyrase 1 se lient dans un rapport molaire 1:1 pour former un complexe bilobé, ce qui aide à expliquer pourquoi la GMD reste inchangée. Ces connaissances permettront le développement d’interventions cliniques plus efficaces ciblant les ARC N-terminaux ainsi que les contacts interdomaines de la tankyrase humaine. / Poly(ADP-ribose) polymerases (PARPs) are enzymes that modify proteins or DNA by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD+). Tankyrase is a PARP that regulates diverse cellular processes, such as telomere maintenance, Wnt signaling, and RNA processing. It is made up of N-terminal ankyrin repeat clusters (ARCs) that bind substrate proteins, a middle sterile α motif domain that mediates polymerization with other tankyrase molecules, and a C-terminal catalytic domain. Due to the fact that tankyrase activity promotes pro-oncogenic Wnt/β-catenin signaling, small molecule inhibitors have been developed that target its catalytic domain and have shown promise for the treatment of colorectal cancer. Certain proteins bind tankyrase, but rather than being targeted for ADP-ribosylation, they inhibit its catalytic activity. These binding partners include GDP-mannose 4,6-dehydratase (GMD) and prostate-associated gene 4 (PAGE4). Importantly, the structure of the full-length tankyrase enzyme has yet to be determined, and it is currently unknown why some proteins that bind to tankyrase are modified with ADP-ribose, while others remain unmodified and instead inhibit its catalytic activity. Understanding this mechanism of inhibition by structural analysis could provide new therapeutic avenues that oppose Wnt/β-catenin signaling by targeting the N-terminal domain of tankyrase. We aimed to use negative stain and cryo-electron microscopy to determine the structures of tankyrase alone and in complex with GMD and PAGE4. We observed that tankyrase 1 assembles as a double helix upon polymerization, creating interdomain contacts that may facilitate its catalytic and scaffolding roles in cellular signaling. Moreover, compacted GMD and ARC1–5 of tankyrase 1 bind in a 1:1 molar ratio to form a bilobal complex, which aids in explaining why GMD remains unmodified. These insights will allow for the development of more effective clinical interventions targeting the N-terminal ARCs as well as interdomain contacts of human tankyrase.
|
Page generated in 0.0288 seconds