21 |
Grupo de holonomia e o teorema de Berger / Holonomy group and Berger theoremGenaro, Rafael, 1989- 23 August 2018 (has links)
Orientador: Rafael de Freitas Leão / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T07:15:26Z (GMT). No. of bitstreams: 1
Genaro_Rafael_M.pdf: 1032495 bytes, checksum: 30e0fabb7aa149ab240fc0b3ae0b6d46 (MD5)
Previous issue date: 2013 / Resumo: Dada uma conexão sobre um fibrado vetorial podemos usá-la para construir o transporte paralelo de elementos do fibrado ao longo de curvas da variedade base. Esta operação nos fornece isomorfismos lineares entre as fibras do fibrado em questão, mas quando consideramos laços na variedade base o ponto de partida é igual ao ponto de chegada, desta forma obtemos um isomorfismo da fibra sobre este ponto nela mesma. O conjunto de isomorfismos obtidos por esta construção formam um grupo chamado Grupo de Holonomia. Quando consideramos o fibrado tangente de uma variedade riemanniana com a conexão Levi-Civita o grupo de holonomia está intrinsecamente relacionado com a geometria da variedade. Esta foi explorada por Marcel Berger para classificar quais grupos podem aparecer como holonomia de uma variedade riemanniana. O objetivo desta dissertação é fornecer uma demonstração geométrica, obtida por Carlos Olmos, deste resultado / Abstract: Given a connection over a vector bundle we can use it to build the parallel transport of elements in the bundle along curves of the base manifold. This function provides us with linear isomorphisms between the fibers of the bundle in question, but when we consider loops in the base manifold starting point is equal to the arrival point, this way we obtain an isomorphism of the fiber over this point in itself. The set of isomorphism obtained by this construction form a group called Holonomy Group. When we consider the tangent bundle of a Riemannian manifold with Levi-Civita connection the holonomy group is intrinsically related to the geometry of the array. This was explored by Marcel Berger to classify which groups can appear as holonomy of a Riemannian manifold. The objective of this dissertation is to provide a geometric demonstration, obtained by Carlos Olmos, this result / Mestrado / Matematica / Mestre em Matemática
|
22 |
Geometria riemanniana e semi-riemanniana no fibrado de Clifford e aplicações / Riemannian and semi-riemannian geometry on Clifford fiber bundle and applicationsWainer, Samuel Augusto, 1989- 11 August 2013 (has links)
Orientador: Márcio Antônio de Faria Rosa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T21:14:43Z (GMT). No. of bitstreams: 1
Wainer_SamuelAugusto_M.pdf: 5577672 bytes, checksum: a3aefda361194ee05c87bea837ce9ddf (MD5)
Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic document . / Mestrado / Matematica / Mestre em Matemática
|
23 |
Oscilações de buracos negros / Black hole oscillationsDadam, Fábio 02 April 2005 (has links)
Orientador: Alberto Vazquez Saa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T02:11:29Z (GMT). No. of bitstreams: 1
Dadam_Fabio_M.pdf: 999114 bytes, checksum: 86eea1cd6f96a55892393c5ee86c320f (MD5)
Previous issue date: 2005 / Resumo: Oscilações de buracos negros adquiriram importância nos últimos anos devido a possibilidade de se comprovar a existência de tais corpos celestes por meio da detecção da radiação gravitacional emitida por eles. Nesse trabalho, o estudo da propagação de ondas de diferentes tipos incidentes em um buraco negro é apresentado sob o ponto de vista matematico. Inicialmente, são usados elementos de Geometria Diferencial a fim de se estabelecer a estrutura matemática da gravitação e, a partir de um conjunto de hipóteses, determinase uma família de soluções das Equações de Einstein que caracteriza os buracos negros (Schwarzschild, Reissner-Nordstrom, Kerr e Kerr-Newman). As Equações de Teukolsky, que governam as perturbações de buracos negros, são obtidas com a ajuda do formalismo de Newman-Penrose e transformadas em uma equação de onda unidimensional. Obedecendo a condições de fronteira especificas, soluções dessa equação para frequências complexas são então determinadas a partir de diferentes métodos semi-analiticos / Abstract: In the past few years, black hole oscillations became a very interesting research area mainly due to the possibility of proving the existence of such celestial bodies through the gravitational radiation emitted by them. In this work, the study of the propagation of different kinds of incident waves on a black hole is presented under the mathematical point of view. Initially, elements of differential geometry are used to establish the mathematical structure of gravitation and, under certain hypotheses, a family of solutions to the Einstein equations is obtained, describing the black holes (Schwarzschild, Reissner-Nordstr¨om, Kerr and Kerr-Newman). Teukolsky equations, which govern the black hole perturbations, are obtained with the aid of Newman-Penrose formalism and transformed to a one-dimensional wave equation. According to certain boundary conditions, solutions of this equation for complex frequencies are determined from different semi-analytic methods / Mestrado / Geometria / Mestre em Matemática
|
24 |
Building Invariant, Robust And Stable Machine Learning Systems Using Geometry and TopologyJanuary 2020 (has links)
abstract: Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is very difficult to gather such data in a real-world setting. For example, in certain medical/healthcare applications, it is very challenging to have access to data from all possible scenarios or with the necessary amount of variations as required to train the system. Additionally, the over-parameterized and unconstrained nature of deep neural networks can cause them to be poorly trained and in many cases over-confident which, in turn, can hamper their reliability and generalizability. This dissertation is a compendium of my research efforts to address the above challenges. I propose building invariant feature representations by wedding concepts from topological data analysis and Riemannian geometry, that automatically incorporate the desired invariance properties for different computer vision applications. I discuss how deep learning can be used to address some of the common challenges faced when working with topological data analysis methods. I describe alternative learning strategies based on unsupervised learning and transfer learning to address issues like dataset shifts and limited training data. Finally, I discuss my preliminary work on applying simple orthogonal constraints on deep learning feature representations to help develop more reliable and better calibrated models. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
|
25 |
De la notion de courbure géodésique en géométrie sous-Riemannienne / On the notion of geodesic curvature in sub-Riemannian geometryKohli, Mathieu 30 September 2019 (has links)
Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales dans une variété sous-Riemannienne de contact, qui indique dans quelle mesure une courbe est différente d'une géodésique. Cette courbure géodésique se présente sous la forme de deux fonctions qui sont toutes deux identiquement nulles le long d'une courbe lisse horizontale si et seulement si cette dernière courbe est une géodésique. Le résultat principal de cette thèse réside dans l'interprétation métrique que l'on donne de ces fonctions de courbure. Cette interprétation consiste à extraire la courbure géodésique des premiers termes de correction dans le développement limité de la distance sous-Riemannienne entre deux points proches le long de la courbe. / We present a notion of geodesic curvature for smooth horizontal curves in a contact sub-Riemannian manifold, measuring how far a horizontal curve is from being a geodesic. This geodesic curvature consists in two functions that both vanish along a smooth horizontal curve if and only if this curve is a geodesic. The main result of this thesis is the metric interpretation of these geodesic curvature functions. This interpretation consists in seeing the geodesic curvature functions as the first corrective coefficients in the Taylor expansion of the sub-Riemannian distance between two close points on the curve.
|
26 |
Gromov-Hausdorff limits of compact Heisenberg manifolds with sub-Riemannian metrics / コンパクトハイゼンベルグ多様体のグロモフハウスドルフ極限Tashiro, Kenshiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22972号 / 理博第4649号 / 新制||理||1668(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 藤原 耕二, 教授 山口 孝男, 教授 入谷 寛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
27 |
Étude du modèle des variétés roulantes et de sa commandabilité / Study of the Rolling Manifolds Model and of its ControllabilityKokkonen, Petri 27 November 2012 (has links)
Nous étudions la commandabilité du système de contrôle décrivant le procédé de roulement, sans glissement ni pivotement, de deux variétés riemanniennes n-dimensionnelles, l'une sur l'autre. Ce modèle est étroitement associé aux concepts de développement et d'holonomie des variétés, et il se généralise au cas de deux variétés affines. Les contributions principales sont celles données dans quatre articles, attachés à la fin de la thèse.Le premier d'entre eux «Rolling manifolds and Controllability : the 3D case»traite le cas où les deux variétés sont 3-dimensionelles. Nous donnons alors, la liste des cas possibles pour lesquelles le système n'est pas commandable.Dans le deuxième papier «Rolling manifolds on space forms», l'une des deux variétés est supposée être de courbure constante. On peut alors réduire l'étude de commandabilité à l'étude du groupe d'holonomie d'une certaine connexion vectorielle et on démontre, par exemple, que si la variété à courbure constante est une sphère n-dimensionelle et si ce groupe de l'holonomie n'agit pas transitivement, alors l'autre variété est en fait isométrique à la sphère.Le troisième article «A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles» décrit, en utilisant le procédé de roulement (ou développement) le long des lacets, une version alternative du théorème de Cartan-Ambrose-Hicks, qui caractérise, entre autres, les isométries riemanniennes. Plus précisément, on prouve que si on part d'une certaine orientation initiale, et si on ne roule que le long des lacets basés au point initial (associé à cette orientation), alors les deux variétés sont isométriques si (et seulement si) les chemins tracés par le procédé de roulement sur l'autre variété, sont tous des lacets.Finalement, le quatrième article «Rolling Manifolds without Spinning» étudie le procédé de roulement et sa commandabilité dans le cas où l'on ne peut pas pivoter. On caractérise alors les structures de toutes les orbites possibles en termes des groupes d'holonomie des variétés en question. On montre aussi qu'il n'existe aucune structure de fibré principal sur l'espace d'état tel que la distribution associée à ce modèle devienne une distribution principale, ce qui est à comparer notamment aux résultats du deuxième article.Par ailleurs, dans la troisième partie de cette thèse, nous construisons soigneusement le modèle de roulement dans le cadre plus général des variétés affines, ainsi que dans celui des variétés riemanniennes de dimensiondifférente. / We study the controllability of the control system describing the rolling motion, without slipping nor spinning, of two n-dimensional Riemannian manifolds, one against the other.This model is closely related to the concepts of development and holonomy of the manifolds, and it generalizes to the case of affine manifolds.The main contributions are those given in four articles attached to the the thesis.First of them "Rolling manifolds and Controllability: the 3D case"deal with the case where the two manifolds are 3-dimensional. We give the listof all the possible cases for which the system is not controllable.In the second paper "Rolling manifolds on space forms"one of the manifolds is assumed to have constant curvature.We can then reduce the study of controllability to the study of the holonomy groupof a certain vector bundle connection and we show, for example, thatif the manifold with the constant curvature is an n-sphere and ifthis holonomy group does not act transitively,then the other manifold is in fact isometric to the sphere.The third paper "A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles"describes, by using the rolling motion (or development) along the loops,an alternative version of the Cartan-Ambrose-Hicks Theorem,which characterizes, among others, the Riemannian isometries.More precisely, we prove that if one starts from a certain initial orientation,and if one only rolls along loops based at the initial point (associated to this orientation),then the two manifolds are isometric if (and only if) the pathstraced by the rolling motion on the other manifolds, are all loops.Finally, the fourth paper "Rolling Manifolds without Spinning"studies the rolling motion, and its controllability, when slipping is allowed.We characterize the structure of all the possible orbits in terms of the holonomy groupsof the manifolds in question. It is also shown that there does not exist anyprincipal bundle structure such that the related distribution becomes a principal distribution,a fact that is to be compared especially to the results of the second article.Furthermore, in the third chapter of the thesis, we construct carefully the rolling modelin the more general framework of affine manifolds, as well as that of Riemannian manifolds,of possibly different dimensions.
|
28 |
Técnicas de bifurcação para o problema de Yamabe em variedades com bordo / Bifurcation techniques in the Yamabe problem in manifolds with boundaryMoreira, Ana Claudia da Silva 29 January 2016 (has links)
Apresentaremos alguns resultados de rigidez e de bifurcação para soluções do problema de Yamabe em variedades produto com bordo. / We will discuss some rigidity and bifurcation results for solutions of the Yamabe problem in product manifolds with boundary.
|
29 |
Generalizations of a Laplacian-Type Equation in the Heisenberg Group and a Class of Grushin-Type SpacesChilders, Kristen Snyder 01 January 2011 (has links)
In [2], Beals, Gaveau and Greiner find the fundamental solution to a 2-Laplace-type equation in a class of sub-Riemannian spaces. This fundamental solution is based on the well-known fundamental solution to the p-Laplace equation in Grushin-type spaces [4] and the Heisenberg group [6]. In this thesis, we look to generalize the work in [2] for a p-Laplace-type equation. After discovering that the "natural" generalization fails, we find two generalizations whose solutions are based on the fundamental solution to the p-Laplace equation.
|
30 |
Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics / Transport optimal sur les structures sous-Riemanniennes admettant des géodésiques minimisantes singulièresBadreddine, Zeinab 04 December 2017 (has links)
Cette thèse est consacrée à l’étude du problème de transport de Monge pour le coût quadratique en géométrie sous-Riemannienne et des conditions essentielles à l’obtention des résultats d’existence et et d’unicité de solutions. Ces travaux consistent à étendre ces résultats au cas des structures sous-Riemanniennes admettant des géodésiques minimisantes singulières. Dans une première partie, on développe des techniques inspirées de travaux de Cavalletti et Huesmann pour d’obtenir des résultats significatifs pour des structures de rang 2 en dimension 4. Dans une deuxième partie, on étudie des outils analytiques de la h-semiconcavité de la distance sousriemannienne et on montre comment ce type de régularité peut aboutit à l’obtention d’existence et d’unicité de solutions dans un cas général. / This thesis is devoted to the study of the Monge transport problem for the quadratic cost in sub-Riemannian geometry and the essential conditions to obtain existence and uniqueness of solutions. These works consist in extending these results to the case of sub-Riemannian structures admitting singular minimizing geodesics. In a first part, we develop techniques inspired by works by Cavalletti and Huesmann in order to obtain significant results for structures of rank 2 in dimension 4. In a second part, we study analytical tools of the h-semiconcavity of the sub-Riemannian distance and we show how this type of regularity can lead to the well-posedness of the Monge problem in general cases.
|
Page generated in 0.073 seconds