Spelling suggestions: "subject:"ripple""
21 |
Modélisation de l'évolution morphodynamique des dunes sous-marines / Modelling of the morphodynamic evolution of submarine sand dunesDoré, Arnaud 11 December 2015 (has links)
Les dunes de sable sont des formes très présentes en milieu marin. Comprendre l'évolution des dunes est un enjeu important pour prévoir les caractéristiques de l'écoulement, les flux sédimentaires, et les variations de la bathymétrie. Les dunes sous-marines représentent un risque pour les activités humaines, a fortiori avec l'intérêt croissant pour les énergies marines renouvelables, pour la navigation, ou l'industrie offshore. Bien que la connaissance des dunes représente un intérêt scientifique et opérationnel de premier ordre, les processus physiques conduisant leur évolution sont toujours mal compris. En outre, la prévision de leurs caractéristiques géométriques et de leur dynamique basée essentiellement sur des formules empiriques reste peu précise. Dans ce travail de thèse, un modèle numérique est d'abord utilisée pour modéliser les dunes soumises à un écoulement stationnaire. Les simulations reproduisent l'évolution d'un fond faiblement perturbé jusqu'à un champ de dunes en équilibre avec l'écoulement et apportent des connaissances approfondies sur les processus physiques mis en jeu. Ensuite, les résultats d'un ensemble de campagnes de mesures réalisées dans la passe sud du bassin d'Arcachon permettent d'étudier la dynamique des dunes tidales in situ et relier leur asymétrie et leur migration aux résiduels de transport sédimentaire. Enfin, l'application du modèle numérique avec les conditions de forçages extraites des campagnes de mesures permet de reproduire la dynamique des dunes tidales ainsi que la génération de rides d'un ordre de grandeur comparable aux rides surimposées observées in situ. Ces résultats ouvrent des perspectives intéressantes en vue du développement d'un modèle opérationnel de prévision de la dynamique des dunes tidales. / Sand dunes are ubiquitous beforms in nature within subaqueous environments. Understanding dune evolution is important issue to accurately predict the ow circulation, sediment uxes and bathymetric variations in sandy subaqueous environments. Sand dunes may pose a significant risk for offshore activities in coastal environments, especially with the growing development of renewable marine energy, for navigation or the offshore industry. Although sand dunes represent a great scientific and operational interest, their evolution is still poorly understood due to their complex behavior. The aim of the thesis work was to study the physical processes driving the evolution of subaqueous sand dunes and to understand their in situ dynamics within tidal environments. First, a numerical model was employed to simulate sand dunes under stationary current conditions. The simulations reproduced the morphodynamic evolution of a slightly perturbed bed until a steady sand dune field in equilibrium with the ow. The results offered a deeper understanding of the physical processes driving the bed evolution to equilibrium. Second, an array of in situ measurements was carried out into the Arcachon inlet, in southwest France, to study the dynamics of tidal sand dunes. For the first time their asymmetry and migration rates were linked to the sediment uxes residuals on a spring-neap tidal cycle. Finally, the numerical model was adapted both to simulate the dynamics of tidal sand dunes, and generate bedforms of the same order of magnitude as the in situ dune-superimposed ripples starting from a at bed. These results open promising perspectives for the development of a numerical tool capable of predicting the behavior of sand dunes within tidal environments.
|
22 |
Interaction of Structured Femtosecond Light Pulses with MatterRahimiangolkhandani, Mitra 28 June 2021 (has links)
Physics and potential applications of femtosecond laser pulses interacting with matter have captured interest in various fields, such as nonlinear optics, laser micromachining, integrated optics, and solar cell technologies. On the one hand, such ultrashort intense pulses make them practical elegant tools to be utilized for direct structuring of materials with high accuracy and numerous potential applications. On the other hand, studying the fundamental aspects and nonlinear nature of such interactions opens new remarkable venues for various unique investigations. In recent years, the emerging topic of structured light (also known as twisted or optical vortex light), i.e., a beam of light with a twisted wave-front that can carry orbital angular momentum (OAM), has attracted the attention of many researchers working in the field of light-matter interaction. Such beams offer various applications from classical and quantum communication to imaging, micro/nano-manipulation, and modification of fundamental processes involved in light-matter interactions, e.g., absorption and emission. Nevertheless, the fabrication of complex structures, controlled modification, and achieving a high spatial resolution in material processing still remain in the spotlight. Moreover, the fundamental role of orbital angular momentum in the nonlinear absorption of materials, particularly in solids, has yet remained a subject of debate. Addressing these points was the main motive behind this dissertation. To accomplish this objective and investigate new aspects of structured light-matter interaction, I conducted various experiments, the results of which are presented in this work. The general idea was to study the interaction of femtosecond laser radiation, having a structured phase and polarization, with the matter in two aspects: (i) surface morphology modification and (ii) nonlinear absorption of solids. In this regard, I studied surface processing of crystalline silicon and CVD diamond with femtosecond laser vortex pulses generated by a birefringent phase-plate, known as q-plate, in single and multiple pulse irradiation regimes, respectively. The characterization of the modified region was performed using optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). I demonstrated that upon irradiation of a single vortex pulse on silicon, a nano-cone structure is formed within the ablated crater, whose height was independent of the helicity of the twisted light. However, for a linearly polarized vortex pulse, the height of the nano-cone decreases at higher pulse energies. The dynamics of nano-cone formation and the role of polarization were also investigated by simulating the mass transport function in this process. Moreover, using superimposed vortex beams, we fabricated complex patterns containing several nano-cones, by single-shot irradiation on the silicon surface. My experimental results offer an ability to actively control and manipulate material, in terms of the nanocones position, in two dimensions with an ultra-high resolution. I further proceeded with our experiments in the multiple pulse regime on a diamond target. By irradiation of a high number of superimposed vortex pulses, I was able to imprint complex polarization states of structured light on the target surface in the form of periodic nano-ripples. This procedure enabled us to not only generate spatially varying nano-gratings but also directly visualize and study very complex states of polarization. Besides these surface structuring, I carried out experimental studies to investigate the response of bulk material to an incident circularly polarized vortex beam that carries orbital angular momentum. The experimental results reveal, for the first time, that such an interaction can produce a differential absorption that gives rise to helical dichroism. We demonstrate that this response is sensitive to the handedness and degree of the twist in the incident vortex beam. Such a dichroism effect may be attributed to the excitation of dipole-forbidden atomic transitions, e.g., electric quadrupole transitions. However, this explanation is not absolute and remains open to further research and investigations.
|
23 |
Instabilités hydrodynamiques de rides d'un substrat érodable ou hautement déformable / Hydrodynamic instabilities of erodible or highly flexible substratesJia, Pan 08 December 2016 (has links)
Cette thèse porte sur l’étude expérimentale et théorique de quatre instabilités associées à l’émergence de motifs réguliers sur des substrats érodables ou fortement déformables,instabilités liées à l’hydrodynamique sur un relief modulé.La première partie porte sur l’étude de l’instabilité d’une plaque élastique fixée aux deux bouts et soumise à un écoulement fluide permanent. La solution plane est instable vis-à-vis d’ondes propagatives, lorsque l’écoulement est suffisamment fort. La sélection de fréquence et de longueur d’onde est caractérisée expérimentalement en fonction de la vitesse de l’écoulement. Ces quantités suivent remarquablement les lois d’échelle obtenues par l’analyse de stabilité linéaire du problème. Le principe de l’expérience pourrait être appliqué à la récupération d’énergie.La deuxième partie porte sur une analyse théorique de la formation de rides géantes sur la comète 67P, récemment observées par la sonde Rosetta. Nous montrons comment le dégazage de vapeur se produit au travers d’une couche poreuse granulaire superficielle et comment l’alternance jour/nuit conduit à des gradients de pression gigantesques qui engendrent des vents thermiques de surface. Ces motifs apparaissent comme étant les analogues de rides qui se forment à la surface de lit sableux dans un écoulement visqueux.L’analyse de stabilité linéaire du problème permet de prédire quantitativement l’émergence de ces rides à la longueur d’onde et à la vitesse de propagation observées. Cette description fournit un outil robuste et fiable pour décrire les processus d’érosion et d’accrétion dans l’évolution des petits corps.Dans la troisième partie, nous proposons un modèle pour l’apparition de motifs de sublimation sur Pluton, tels que ceux observés sur Sputnik Planum. La formation et l’évolution de ces motifs proviennent de la sublimation/condensation différentielle de la glace d’azote.Nous montrons que l’atmosphère de Pluton possède des propriétés (température et pression)peu variables en espace et en temps. Nous analysons les différents mécanismes d’instabilité en compétition et concluons à un mécanisme original, basé sur le mélange et e transport de chaleur dans l’atmosphère, plutôt qu’au mécanisme des pénitents, basé sur l’auto-éclairement de la surface de glace.Enfin, nous avons étudié théoriquement l’instabilité de formation des rides éoliennes en considérant les trajectoires des grains résonantes avec le relief. Cette modélisation prend en compte de manière simple et effective les effets collectifs du transport de sédiments. Le modèle est validé à partir de simulations numériques existantes, elles mêmes calées sur des expériences contrôlées. / This thesis is devoted to the experimental and theoretical investigations of four instabilitiesassociated with the emergence of regular patterns over erodible/flexible substrates, andrelated to hydrodynamics over a modulated relief.First, the instability of a flexible sheet clamped at both ends and submitted to a permanentwind is investigated. The flat sheet solution is unstable towards propagative waves, forstrong enough wind. We experimentally study the selection of frequency and wavenumberas a function of the wind velocity. These quantities obey simple scaling laws derived froma linear stability analysis of the problem. This phenomenon may be applied for energyharvesting.Second, an explanation is proposed for the giant ripples observed by spacecraft Rosettaat the surface of the comet 67P. We show that the outgassing flow across a porous surfacegranular layer and the strong pressure gradient associated with the day-night alternanceare responsible for thermal superficial winds. We show that these unexpected patterns areanalogous to ripples emerging on granular beds submitted to viscous shear flows. Linearstability analysis of the problem quantitatively predicts the emergence of bedforms at theobserved wavelength and their propagation. This description provides a reliable tool topredict the erosion and accretion processes controlling the evolution of small solar systembodies.Third, we propose a model for rhythmic, dune-like patterns observed on SputnikPlanum of Pluto. Their emergence and evolution are related to the differential condensation/sublimation of nitrogen ice. We show that the temperature and pressure in Pluto’satmosphere are almost homogeneous and steady, and that heat flux from the atmospheredue to convection and turbulent mixing is responsible for the emergence of these sublimationpatterns, in contrast to the penitentes instability due to solar radiation.Last, we report an analytical model for the aeolian ripple instability by considering theresonant grain trajectories over a modulated sand bed, taking the collective effect in thetransport layer into account. The model is tested against existing numerical simulationsthat match experimental observations.
|
24 |
A study on magnetic fluctuations over the ionospheric E-region driven by the lower atmospheric phenomena / 下層大気現象により駆動される電離圏 E領域上空磁場変動の研究Nakanishi, Kunihito 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19507号 / 理博第4167号 / 新制||理||1598(附属図書館) / 32543 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 家森 俊彦, 教授 田口 聡, 教授 余田 成男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
25 |
A study on the origin of small-scale field-aligned currents as observed in topside ionosphere at middle and low latitudes / 中低緯度電離圏上部で観測される微細沿磁力線電流の起源についての研究Aoyama, Tadashi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20183号 / 理博第4268号 / 新制||理||1613(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 家森 俊彦, 教授 田口 聡, 教授 塩谷 雅人 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
26 |
Multifunctional Polymer Fiber Probes for Biomedical ApplicationKim, Jongwoon 17 June 2024 (has links)
Biomedical devices play a crucial role in the healthcare system, enabling more effective treatments, less invasive procedures, and more precise diagnoses. Due to these compelling reasons, development of new biomedical devices and biomaterials have always been in high demand. Exploring and refining fabrication methods are essential to the development of new biomedical devices. Some of the common fabrication methods include microfabrication methods (photolithography and soft lithography), 3D printing (additive manufacturing), laser machining, thermal drawing, and electrospinning. The choice of fabrication methods heavily depends on the materials, geometry, and functionalities of biomedical devices. Currently, the thermal drawing process has proven to be an excellent scalable fabrication platform for neural interface, tissue engineering, tumor/cancer treatment, soft robotics, and smart textiles. This Ph.D. dissertation summarizes my research on the fabrication and validation of thermally drawn multifunctional polymer fiber probes for modern biomedical applications, primarily in the fields of neural interfaces and tumor treatments.
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Utilizing the thermal drawing process, we developed T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes and Tetro-DOpE (Tetrode-like Drug delivery, Optical stimulation, and Electrophysiology) probes that can simultaneously record and manipulate neural activity in behaving rodents. Taking advantage of the triple-functionality, we monitored local field potential (LFP) while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity using optogenetics. Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.
Microscale electroporation devices are mostly restricted to in vitro experiments (i.e., microchannel and microcapillary). We developed a flexible microscale electroporation fiber probe through a thermal drawing process and femtosecond laser micromachining techniques. The novel fiber microprobes enable microscale electroporation and arbitrarily select the cell groups of interest to electroporate. Successful reversible and irreversible microscale electroporation was observed in a 3D collagen scaffold (seeded with U251 human glioma cells) using fluorescent staining.
Leveraging the scalable thermal drawing process, we envision a wide distribution of multifunctional polymer fiber probes in research facilities and hospitals. Along with the fiber probes presented in this dissertation, additional insight and future perspective on thermally drawn biomedical devices are discussed. / Doctor of Philosophy / The thermal drawing process is a versatile and scalable platform for fabricating functional fiber technology. The process was formerly adapted from fabrication method for silica optical fibers, widely used in telecommunication (e.g., telephone, internet, cable TV, etc.). To name some functionalities of these fibers, they can move, hear, sense touch, change colors, harvest and store energy, record and manipulate brain activity, and ablate tumors. As imagined, these functionalities are derived from the unique geometry and functional materials embedded along the fiber. Therefore, developing the fiber design tailored to a specific application is a critical step to making a successful fiber product. In this dissertation, I will present my work on biomedical devices fabricated with the thermal drawing process and their application in neuroscience and tumor/cancer treatment.
Utilizing the thermal drawing process, we developed neural interfaces that can be implanted into the deep brain and record and simultaneously manipulate the neural activity. These neural interfaces (Chapter 2,3; T-DOpE and Tetro-DOpE probes, respectively) are able to record both local field potentials (LFP; activity of thousands or more neurons) and single action potentials (single on/off signal from individual neurons nearby). By manipulating the gene expression, we can control the activity of neurons with specific light (λ= 470nm; blue light) exposure. We implemented optical waveguide in our probes to guide light from a laser source to the tip of the probe and manipulate the neural activity. Furthermore, we fabricated micro-channels within the device to enable focal drug delivery at the tip of the device. Using the T-DOpE probe, we studied the effect of local synthetic cannabinoid injection in the hippocampus. We found that the local injection of the drug in hippocampus CA1 makes neurons incapable of generating sharp wave-ripples (a neural signal associated with memory).
Electroporation is a biophysical phenomenon where short high electric field pulses introduce nanoscale defects in cell membrane. These defects can cause unstable cellular homeostasis and eventually leads to cell death. Due to reduced treatment time, no heat effect, and tissue selectivity, electroporation has been used in clinical trials for cancer treatments. Using the thermal drawing process and laser micromachining techniques, we developed a flexible microscale electroporation fiber probe capable of ablating tumor cells.
Due to the low-cost and scalability of thermal drawing process, we envision the use of thermally drawn functional fiber technology in biomedical fields. In this dissertation, I also address some challenges and future directions of thermally drawn functional fibers in biomedical fields.
|
27 |
Hippocampal circuitsBöhm, Claudia 18 October 2016 (has links)
Der Hippokampus spielt eine wichtige Rolle bei der Erfassung, Festigung und dem Wiederabrufen von Gedächtnisinhalten. Diese Prozesse werden von Oszillationen begleitet, die synchronisierte neuronale Aktivität wiederspiegeln. Der erste Teil dieser Arbeit konzentriert sich auf ‘ripples’, eine schnell schwingende Netzwerkaktivität, die an der Festigung von Gedächtnisinhalten beteiligt ist. Das Subikulum ist eine der Hauptausgangsstationen des Hippokampus und überträgt Informationen zu Zielregionen außerhalb dieser Region. Um dies besser zu verstehen, habe ich hier die Eigenschaften von subikulären Pyramidenzellen und deren Regulierung während ripples untersucht. Es zeigte sich, dass eine Untergruppe von Zellen, burst (in Salven) feuernde Zellen, ihre Aktivität erhöht, während eine zweite Untergruppe, regulär feuerende Zellen, ihre Aktivitaet während ripples vermindert. Ferner ist bei regulär feuernden Zellen das Verhältnis zwischen Inhibition und Exzitation höher als bei burst feuernden Zellen. Zusammen mit Erkenntnissen aus früheren Studien lassen diese Ergebnisse vermuten, dass Information während ripples hauptsächlich zu Zielregionen der burst feuernden Zellen geleitet wird. Neben Pyramidenzellen beherbergt der Hippokampus auch eine Vielzahl verschiedener Interneurone. Im zweiten Teil dieser Arbeit habe ich O-LM Interneurone der hippokampalen Region CA1 untersucht. Diese spielen eine wichtige Rolle bei der Kontrolle von Eingängen aus dem entorhinalen Kortex. Wir konnten zeigen, dass die exzitatorische Übertragung auf O-LM Interneurone durch Serotonin, einem von den Raphe-Kernen ausgeschütteten Neuromodulator, vermindert wird. Dies geschieht durch einen präsynaptischen Mechanismus, der wahrscheinlich eine Verminderung des Kalziumeinstroms in präsynaptische Endigungen umfasst. Eine Verminderung der Aktivität von O-LM Interneuronen durch Serotonin könnte die synaptische Übertragung von Signalen aus dem entorhinalen Kortex auf CA1 Pyramidenzelldendriten erleichtern. / The hippocampus plays an important role in the acquisition, consolidation and retrieval of memory. These processes are accompanied by hippocampal oscillations, which reflect synchronized neuronal activity. The first part of this thesis focuses on ripples, a fast oscillatory activity which is involved in memory consolidation. The subiculum as one of the main output areas of the hippocampus is ideally suited to mediate information transfer to extrahippocampal targets. Here I investigated the properties of subicular pyramidal cells and their modulation during ripples. I found that a subset of subicular pyramidal cells increases its firing rate during ripples whereas another subset decreases its firing rate. Furthermore I was able to identify a correlate between modulation and cell subtype: burst firing cells increased their firing rate, and regular firing cells decreased their firing rate. We could further show that regular firing cells receive a higher ratio of inhibition to excitation as compared to burst firing cells. Together with earlier work, these results suggest that information transferred during ripples is likely to be routed preferentially to target regions of the burst firing subtype. Besides pyramidal cells, the hippocampus hosts a variety of interneuron types. The second part of this thesis focuses on GABAergic O-LM interneurons of hippocampal area CA1, which play an important role in controlling input from the entorhinal cortex. We could show that excitatory transmission from local pyramidal cells onto O-LM interneurons is decreased by serotonin, a neuromodulator released from the midbrain raphe nuclei. This modulation is mediated by a presynaptic mechanism and is likely to involve a decrease in calcium influx into presynaptic terminals. We conclude that serotonin, by decreasing O-LM output, might release fibers from entorhinal cortex impinging onto CA1 pyramidal cell dendrites from inhibition.
|
28 |
The role of interneuronal networks in hippocampal ripple oscillationsLeiva, José Ramón Donoso 05 December 2016 (has links)
Hippokampale Sharp Wave-Ripples (SWRs) sind elektrografische Ereignisse, die für die Konsolidierung von Erinnerungen eine Rolle spielen. Eine SWR ist durch eine schnelle Oszillation (>90 Hz, ''ripple'') charakterisiert, die sich mit der langsameren ''sharp wave'' ( / Hippocampal sharp wave-ripples (SWRs) are electrographic events that have been implicated in memory consolidation. A SWR is characterized by a fast (> 90 Hz) oscillation, the ripple, superimposed on a slow (< 30 Hz) sharp wave. In vivo, the fast component can express frequencies either in the ripple range (140-200 Hz) or fast-gamma range (90-140 Hz). Episodes in both bands exhibit intra-ripple frequency accommodation (IFA). In vitro, ripples are frequency-resistant to GABA modulators. These features constrain the type of mechanisms underlying the generation of the fast component. A prominent hypothesis proposes that a recurrent network of parvalbumin-immunoreactive basket cells (PV+BC) is responsible of setting the ripple frequency. The focus of the present thesis is on testing to which extent the PV+BC network can account for the aforementioned features of SWRs, which remain unexplained. Here, I simulated and analyzed a physiologically constrained in silico model of the PV+BC network in CA1 under different conditions of excitatory drive. The response of the network to transient excitation exhibits both IFA in the ripple band and frequency resistance to GABA modulators. The expression of IFA in the fast gamma band requires the involvement of pyramidal cells in a closed loop with the PV+BC network. The model predicts a peculiar relationship between the instantaneous frequency of ripples and the time course of the excitatory input to CA1. This prediction was confirmed in an in vitro model of SWRs. Additionally, I study the involvement of oriens lacunosum-moleculare interneurons (O-LM) during SWRs in vitro. I characterize the excitatory currents received by O-LM cells during SWRs and investigate the factors that determine their recruitment.
|
29 |
Ion beam processing of surfaces and interfaces – Modeling and atomistic simulationsLiedke, B. 14 March 2012 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund’s sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially.
A novel program package for 3D atomistic simulations called trider (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach.
The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as ’cleanest’ possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect ‘sputtering’. However, taking into account the new mechanisms, a ‘Bradley-Harper equation’ with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at θ ≥ 40°.
The evolution of bimetallic interfaces under ion irradiation is another application of trider described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He+ ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The trider program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
|
30 |
A-type Potassium Channels in Dendritic Integration : Role in EpileptogenesisTigerholm, Jenny January 2009 (has links)
<p>During cognitive tasks, synchronicity of neural activity varies and is correlated with performance. However, there may be an upper limit to normal synchronised activity – specifically, epileptogenic activity is characterized byexcess spiking at high synchronicity. An epileptic seizure has a complicated course of events and I therefore focused on the synchronised activity preceding a seizure (fast ripples). These high frequency oscillations (200–1000 Hz) have been identified as possible signature markers of epileptogenic activity and may be involved in generating seizures. Moreover, a range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A–type potassium channel (KA). Our first objective was to investigate if KA could suppress synchronized input while minimally affecting desynchronised input. The second objective was to investigate if KA could suppress fast ripple activity. To study this I use a detailed compartmental model of a hippocampal CA1 pyramidal cell. The ion channels were described by Hodgkin–Huxley dynamics.</p><p>The result showed that KA selectively could suppress highly synchronized input. I further used two models of fast ripple input and both models showed a strong reduction in the cellular spiking activity when KA was present. In an ongoing in vitro brain slice experiment our prediction from the simulations is being tested. Preliminary results show that the cellular response was reduced by 30 % for synchronised input, thus confirming our theoretical predictions. By suppressing fast ripples KA may prevent the highly synchronised spiking activity to spread and thereby preventing the seizure. Many antiepileptic drugs down regulate cell excitability by targeting sodium channels or GABA–receptors. These antiepileptic drugs affect the cell during normal brain activity thereby causing significant side effects. KA mainly suppresses the spiking activity when the cell is exposed to abnormally high synchronised input. An enhancement in the KA current might therefore be beneficial in reducing seizures while not affecting normal brain activity.</p>
|
Page generated in 0.0456 seconds