• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 12
  • 5
  • 2
  • 2
  • Tagged with
  • 62
  • 13
  • 13
  • 12
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Structure Of Braid Bars: Facies Relationships of Pleistocene Braided Outwash Deposits, Paris, Ontario

Eynon, George January 1972 (has links)
<p> A large gravel pit at East Paris exposed 14m of Pleistocene braided outwash. Large scale longitudinal bars (30 - 400m long) were developed utilising irregular topographic highs (4 - 6m) of the basal gravels as Bar Cores. These bars prograded downstream by means of larce-scale cross-strata, periodically interupted by reactivation surfaces. Contemparaneous upstream addition of material took place by the migr ation of mixed sand and gravel bed-forms on the stoss-side of the bars. The gravel supply to the avalanche face of the major bars took the form of imbricated gravels which passed from the stoss-side, through the Bar Top, onto the Bar Front. Adjacent, sandy side-channels (4 -6m deep) exhibit a fining upward fill of trough cross beds, planar lamination and ripples; and interdigitated with the gravel bars alongside. </p> <p> Aggradation of the flood plain led to the extension of the Bar Top facies over the length of the bars, and then to the development of a Shallow-braided stream facies over the whole system. The latter is recognised by its smaller (less than 1m) bar forms composed of crossbedded gravel supplied by an imbricate gravel, and numerous small, sandy channel forms. </p> <p> At West Paris another large gravel pit exposed 6m of sandier, but stratigraphically equivalent deposits. Large scale side-bar accumulations (200-300m across) of gravel developed from river bank lateral accretion deposits. The downstream progradation was by lobes of cross-stratified and imbricated gravels, alternating with sand drapes of low flow stages. Sandy Side-channels (4m deep) developed between the gravel lobes and the accreting river bank. </p> <p> The concept of braid bar growth from a pre-existing form (bar core or river bank) is in contrast to the classic theory of development from a gravel lag. The differences may be due to depth relationships of the systems, which in this case may be the effect of position on the sandur surface. </p> / Thesis / Master of Science (MSc)
52

Study of ultrashort laser-pulse induced ripples formed at the interface of silicon-dioxide on silicon

Liu, Bing 04 1900 (has links)
<p>In this thesis, the ripple formation at the interface of SiO2 and Si were studied in a systematic fashion by irradiating the SiO2-Si samples with ultrashort laser pulses under a broad variety of experimental conditions. They consist of di↵erent irradiating laser wavelengths, incident laser energies, translation speeds, translation directions, spot sizes of the laser beam, as well as oxide thicknesses. The ripples produced by laser irradiation are examined using various microscopy techniques in order to characterize their surface morphology, detailed structures, crystalline properties, and so on. For the experiments carried out at ! = 800 nm, the ripples formed on the SiO2-Si sample with an oxide thickness of 216 nm were first observed under optical microscopy and SEM. After removing the oxide layer with HF solution, the surface features of the ripples on the Si substrate were investigated using SEM and AFM techniques. Subsequently, by means of TEM and EDX analysis, the material composition and crystallinity of the ripples were determined. It is concluded that the ripples are composed of nano-crystalline silicon. In addition to the 216 nm oxide thickness, other oxide samples with di↵erent oxide thicknesses, such as 24, 112, 117, 158 and 1013 nm, were also processed under laser irradiation. The ripple formation as a function of the laser energy, the translation direction and the spot size is discussed in detail. Furthermore, the ripples created at the SiO2-Si interface are compared with</p> <p>the LIPSS created on pure silicon samples that were processed under similar laser irradiation conditions. The spatial periodicities of the ripples were evaluated to be in the range of between 510 nm and 700 nm, which vary with the oxide thickness and other laser parameters. For the experiments using the ! = 400 nm laser pulses, it is found that ripples can also be formed at the SiO2-Si interface, which have spatial periodicities in the range of between 310 nm and 350 nm depending on the oxide thickness. The ripple formation at this 400 nm wavelength as a function of the laser energy, the translation speed, and translation direction is considered as well. For the case of ! = 400 nm irradiation, a comparison is also made between the interface ripples on the SiO2-Si samples and the LIPSS on a pure Si sample. Through FIB-TEM and EDX analysis, it confirmed that the ripples were produced in the substrate while the oxide layer maintained its structural integrity. In addition, the ripples are composed of nano-crystalline silicon whose crystallite sizes are on the order of a few nanometers. Apart from irradiating oxide samples with femtosecond laser pulses, which applies to the two cases of ! = 800 and 400 nm mentioned above, oxide samples with an oxide thickness of 112 nm were irradiated with picosecond laser pulses at ! = 800 nm whose pulse durations are 1 ps and 5 ps, respectively. However, no regular ripples can be produced at the SiO2-Si interface while maintaining the complete integrity of the oxide layer.</p> / Master of Applied Science (MASc)
53

Granular retrosplenial cortex layer 2/3 generates high frequency oscillation events coupled with hippocampal sharp wave-ripples and Str. LM high gamma

Arndt, Kaiser C. 11 June 2024 (has links)
Encoding and consolidation of memories are two processes within the hippocampus, and connected cortical networks, that recruit different circuit level dynamics to effectively process and pass information from brain region to brain region. In the hippocampal CA1 pyramidal layer local field potential (LFP), these processes take the form of theta and sharp wave ripples (SPW-Rs) for encoding and consolidation, respectively. As an animal runs through an environment, neurons become active at specific locations in the environment (place cells) increasing their firing rate, functionally representing these specific locations. These firing rate increases are organized within the local theta oscillations and sequential activation of many place cells creates a map of the environment. Once the animal stops moving and begins consummatory behaviors, such as eating, drinking, or grooming, theta activity diminishes, and large irregular activity (LIA) begins to dominate the LFP. Spontaneously, with the LIA, the place cells active during the experience are replayed during SPW-Rs in the same spatial order they were encountered in the environment. Both theta and SPW-R oscillations and their associated neuronal firing are necessary for effective place recognition as well as learning and memory. As such, interruption or termination of SPW-R events results in decreased learning performance over days. During exploration, the associated theta and sequential place cell activity is thought to encode the experience. During quiet restfulness or slow wave sleep (SWS), SPW-R events, that replay experience specific place sequences, are thought to be the signal by which systems consolidation progresses and the hippocampus guides cortical synaptic reorganization. The granular retrosplenial cortex (gRSC) is an associational area that exhibits high frequency oscillations (HFOs) during both hippocampal theta and SPW-Rs, and is potentially a period when the gRSC interprets incoming content from the hippocampus during encoding and systems consolidation. However, the precise laminar organization of synaptic currents supporting HFOs, whether the local gRSC circuitry can support HFOs without patterned input, and the precise coupling of hippocmapla oscillations to gRSC HFOs across brain states remains unknown. We aimed to answer these questions using in vivo, awake electrophysiological recordings in head-fixed mice that were trained to run for water rewards in a 1D virtual environment. We show that gRSC synaptic currents supporting HFOs, across all awake brain states, are exclusively localized to layer 2/3 (L2/3), even when events are detected within layer 5 (L5). Using focal optogenetics, both L2/3 and L5 can generate induced HFOs given a strong enough broad stimulation. Spontaneous gRSC HFOs occurring outside of SPW-Rs are highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a necessary role in communication between the hippocampus during SPW-Rs states and between the hippocampus, gRSC, and MEC during theta states to support memory consolidation and memory encoding, respectively. / Doctor of Philosophy / As an animal moves through an environment, individual neurons in the hippocampus, known as place cells, increase and decrease their firing rate as the animal enters and exits specific locations in the environment. Within an environment, multiple neurons become active in different locations, this cooperation of spiking in various locations creates a place map of the environment. Now let's say when the animal moved from one corner of the environment to another, place cells 'A', 'C', 'B', 'E', and 'D' became active in that order. This means, at any given point in the environment, the animal is standing in a venn-diagram-esque overlap of place fields, or locations individual place cells represent. A key question that entranced researchers for many years was how do these neurons know when to be active to not impinge on their neighbor's locations? The answer to this question rested with population electrical activity, known as the local field potential (LFP), that place cell activity is paced to. During active navigation through an environment, place cells activity is coupled to the phase of a slow ~8 hertz (Hz) theta oscillation. Within one theta cycle, or peak to peak, multiple place cells are active, representing the venn diagram of location the animal is in. Importantly, this theta activity and encoding of place cell activity is largely seen during active running or rapid eye movement (REM) sleep. During slow wave sleep (SWS), after an animal has experienced a specific environment and has created a place map, place cells are reactivated in the same order the animal experienced them in. From our previous example, the content of this reactivation would be the place cells 'A', 'C', 'B', 'E', and 'D' which all would be reactivated in that same order. These reactivations or replays occur during highly synchronous and fast LFP oscillations known as sharp wave-ripples (SPW-Rs). SPW-Rs are thought to be a key LFP event that drives memory consolidation and the eventual conversion of short-term memory into long-term memory. However, for consolidation to occur, connected cortical regions need to be able to receive and interpret the information within SPW-Rs. The granular retrosplenial cortex (gRSC) is one proposed region that serves this role. During SPW-Rs the superficial gRSC has been shown to exhibit high frequency oscillations (HFOs), which potentially serve the purpose for interpreting SPW-R content. However, HFOs have been reported during hippocampal theta, suggesting HFOs serve multiple purposes in interregional communication across different states. In this study, we found that naturally occurring gRSC HFOs occur exclusively in layer 2/3 across all awake brain states. Using focal optogenetic excitation we were able to evoke HFOs in both layer 2/3 and 5. Spontaneous gRSC HFOs occurring without SPW-Rs were highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a general role in supporting hippocampo-cortical dialogue during SPW-R and theta brain states to support memory consolidation and encoding, respectively.
54

Inhibition, Synapses, and Spike-Timing: Identification and disruption of pyramidal cell-interneuron interactions in SPW-Rs.

Gilbert, Earl Thomas 25 June 2024 (has links)
The neural circuitry responsible for memory consists of complex components with dynamic interactions. In hippocampal area CA1, interactions between excitatory pyramidal cells and inhibitory interneurons shape ensemble activity which encodes sequential experience. An extremely diverse set of inhibitory interneurons, with variation in gene expression, synaptic targeting, state-dependent activity, and connectivity, contribute substantially to circuit activity, such as theta and sharp wave-ripple oscillations. The precise roles of each interneuron group is not well understood, though characterization of their activity reveals mechanisms underlying hippocampal circuit computation. In this dissertation, I aim to identify and disrupt interactions between pyramidal cells and local interneurons to clarify their role in shaping cell assembly activity. We characterized axo-axonic cell activity in sharp wave-ripples, and compared their control of pyramidal cell activity and ripple events to parvalbumin expressing neurons. We identified pyramidal cell-interneuron interactions during ripples, suggesting they serve as lateral inhibitors between cell assemblies. We additionally developed and implemented a novel neural device to explore the role of cannabinoid disruption of hippocampal oscillations and organization of assemblies in vivo in awake animals. We demonstrate that cannabinoid receptor type 1 within CA1 is responsible for suppression of theta and SPW-Rs. We also found that cannabinoid activation within CA1 circuitry, regardless of muted input from CA3, was sufficient to disrupt sharp wave-ripples, likely through interference of pyramidal cell-interneuron interactions. The work in this dissertation provides insight suggesting that interneuron activity must be studied at the spiking timescale to characterize their control over cell assembly activity. / Doctor of Philosophy / Understanding how the brain creates memory remains one of the greatest questions in the field of neuroscience. Coordinated brain activity serves to build communication on large and small scales, across brain regions and within circuits consisting of small groups of neurons. Precise coordination of activity and communication across neurons and regions is thought to build salient experience, which is achieved through the timing of neuron action potentials, or spikes. Neurons receive thousands of inputs that control their spiking activity. "Go and stop" signals from excitatory and inhibitory interneurons act to conduct synchronized activity, which is required for proper circuit function. Importantly, coordinated spiking across large groups of neurons is responsible for observed "brain waves", or oscillations, which reflect organized activity. In CA1 of the hippocampus, there are >20 subtypes of interneurons that all make distinct contributions to memory function, and the roles of these interneurons have not been fully studied within behaving animals. As engineers develop new tools, new methods become available to study and classify how unique groups of interneurons play a part in circuit activity. Thus, we sought to characterize the role of axo-axonic cells, a specialized interneuron with strong control over spiking activity, in hippocampal oscillations that are responsible for memory encoding and consolidation. We identified a new role for axo-axonic cells in the regulation of pyramidal cell spiking in sharp wave-ripple oscillations. Additionally, we developed a novel neural device that allowed us to investigate the mechanisms that underlie cannabinoids, molecules found in Cannabis sativa, and memory dysfunction. We leveraged the multifunctionality of our T-DOpE probe to focally deliver synthetic cannabinoid into the hippocampus in combination with optical control of circuits, with simultaneous recording of activity. We found that cannabinoids acting within CA1 sufficiently disrupt hippocampal oscillations, likely through hindering pyramidal cell-interneuron interactions. Together, these findings suggest that the spatial and temporal resolution required to study diverse roles of interneurons is high, and experiments designed to explore interneuron activity should especially emphasize fine time-scales.
55

Ion beam processing of surfaces and interfaces

Liedke, Bartosz 28 December 2011 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
56

Ion beam processing of surfaces and interfaces: Modeling and atomistic simulations

Liedke, Bartosz 23 September 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
57

Redbeds of the Upper Entrada Sandstone, Central Utah: Facies Analysis and Regional Implications of Interfingered Sabkha and Fluvial Terminal Splay Sediments

Valenza, Jeffery Michael 01 December 2016 (has links)
First distinguished from other sedimentary successions in 1928, the Entrada Sandstone has been the subject of numerous studies. The western extent of the formation was initially described as laterally continuous "earthy" red beds, and categorized as sub- to supratidal marine-influenced sediments. Recent workers have reexamined the sedimentary facies hosted by the Entrada Sandstone, and findings suggest purely terrestrial depositional environments. Several outcrops of the upper Entrada hosted peculiar sedimentary features, including undulatory and convex-upward, parallel-laminated bedforms, reminiscent of hummocky cross-stratification- unexpected features in a terrestrial environment. The purpose of this study was to collect detailed outcrop measurements of these and other facies present in the upper Entrada Sandstone and to place them in context within a regional sedimentary system. Measured section data was analyzed and divided into sixteen primary facies based on textures, features, bedforms, grain size, and other characteristics. Surfaces were also noted and described. Each facies and surface was recognized to have developed under specific depositional or flow conditions, including eolian, paleosol, and fluvial subcritical, critical, supercritical, and waning flow. Primary facies were grouped into observed and interpreted facies associations. A depositional environment was then assigned to each facies association. These environments included sabkha, overbank splay/paleosol, distal terminal splay, and hyper-distal terminal splay. Ancient analogs were found in the Blomidon, Skagerrak, and Ormskirk Formations, which have been described as dryland fluvial systems that terminated onto saline mudflats (sabkhas). Modern analogs were found in the central Australian continent, in the form of fluvial terminal splays in ephemeral Lakes Eyre and Frome. The sedimentary system of the upper Entrada Sandstone of the San Rafael Swell is interpreted as an interfingering fluvial terminal splay and inland sabkha system. These are marked by a wide array of sedimentary structures representing stark extremes, from hyperarid to flash flooding conditions. During arid conditions, the only source of water was evaporative pumping of a high water table. During the rare occasions when surface water flowed through the system, flash flooding events produced the highest stage of supercritical flow described in geological literature. The succession of these facies reveals allogenic and autogenic processes active at the time of deposition, including episodes of tectonic uplift and fluvial avulsions.
58

Αριθμητική προσομοίωση τυρβώδους ροής και μεταφορά ιζήματος πυθμένα επαγόμενων από τη διάδοση και θραύση παράκτιων κυματισμών

Κολοκυθάς, Γεράσιμος 02 March 2015 (has links)
Στην παρούσα διατριβή διερευνάται η επίδραση παράκτιων μη-θραυόμενων κυματισμών στη μορφολογική ισορροπία αμμώδους πυθμένα με πτυχώσεις, η θραύση εκχείλισης κυμάτων πάνω από πυθμένα σταθερής κλίσης, καθώς και τα συνεπαγόμενα κυματογενή ρεύματα στη ζώνη απόσβεσης. Για το σκοπό αυτό αναπτύσσονται μοντέλα αριθμητικής προσομοίωσης, τα οποία πραγματοποιούν επίλυση των δισδιάστατων και τρισδιάστατων εξισώσεων ασυμπίεστης, συνεκτικής ροής με ελεύθερη επιφάνεια. Η αριθμητική επίλυση των εξισώσεων ροής, Navier-Stokes, επιτυγχάνεται με τη χρήση κλασματικής μεθόδου για τη χρονική ολοκλήρωση, ενώ η χωρική διακριτοποίηση πραγματοποιείται μέσω ενός υβριδικού σχήματος πεπερασμένων διαφορών και ψευδο-φασματικών μεθόδων προσέγγισης. Στις προσομοιώσεις της θραύσης εκχείλισης κύματος γίνεται χρήση της μεθόδου προσομοίωσης μεγάλων κυμάτων LWS, σύμφωνα με την οποία επιλύονται μόνο οι μεγάλες χωρικές διακυμάνσεις της ταχύτητας και της ελεύθερης επιφάνειας, ενώ η επίδραση των μικρότερων διακυμάνσεων περιγράφεται μέσω ενός μοντέλου διατμητικών τάσεων υποκλίμακας (SGS), ανάλογα με ότι ισχύει στη μέθοδο προσομοίωσης μεγάλων δινών, LES. Ένα ανεξάρτητο μοντέλο για την προσομοίωση της μεταβολής μορφολογίας πυθμένα, μέσω μεταφοράς φορτίου πυθμένα, αναπτύσσεται και χρησιμοποιείται σε σύζευξη με τα μοντέλα προσομοίωσης δισδιάστατης ροής. H παροχή του φορτίου πυθμένα υπολογίζεται μέσω τροποποίησης γνωστών εμπειρικών σχέσεων, σε συνδυασμό με τη στιγμιαία διατμητική τάση πυθμένα από τη μονάδα προσομοίωσης της ροής. Από τις προσομοιώσεις ροής πάνω από πυθμένα με πτυχώσεις, προκύπτει ότι η παρουσία των πτυχώσεων επηρεάζει σημαντικά το κυματογενές οριακό στρώμα, ενώ οι μορφολογικές προσομοιώσεις οδηγούν στο συμπέρασμα ότι, η μακροπρόθεσμη ισορροπία των πτυχώσεων επέρχεται για συγκεκριμένη τιμή της γωνίας/συντελεστή δυναμικής τριβής, η οποία συσχετίζεται με τις διαστάσεις των πτυχώσεων και τα χαρακτηριστικά του κύματος. Για τη θραύση εκχείλισης εξετάζονται οι περιπτώσεις κάθετης αλλά και υπό γωνία, ως προς την ακτογραμμή, διάδοσης κυμάτων πάνω από πυθμένα σταθερής κλίσης 1/35. Τα αποτελέσματα για τα χαρακτηριστικά της κάθετης θραύσης (ύψος και βάθος θραύσης, Ηb και db, αντίστοιχα) και του συνεπαγόμενου υποβρύχιου ρεύματος, συγκρίνονται με δημοσιευμένες πειραματικές μετρήσεις και η συμφωνία είναι ικανοποιητική. Το μοντέλο είναι σε θέση να προσομοιώσει την ανάπτυξη του επιφανειακού στροβίλου στο μέτωπο του θραυόμενου κύματος, η οποία συνοδεύεται από αύξηση της ισχύος των SGS τάσεων (μέχρι βάθους d/db ≈ 0.75) και διαδοχική μείωσή τους, μέχρι μηδενισμού, στα ρηχά της ζώνης απόσβεσης. Από τα αποτελέσματα για το πεδίο στροβιλότητας και τις SGS τάσεις, κατά την προσομοίωση της υπό γωνία θραύσης, παρατηρείται η σταδιακή θραύση του κύματος κατά μήκος της κορυφογραμμής, ενώ προκύπτει ότι οι τελευταίες παραμένουν ενεργές για περίπου δύο μήκη κύματος. Επίσης, η μέση ταχύτητα του παράλληλου ρεύματος προκύπτει πιο ενισχυμένη σε ρηχά βάθη στη ζώνη απόσβεσης (d/db < 0.5), ενώ η κατακόρυφη κατανομή του παρουσιάζεται σαφώς επηρεασμένη από την παρουσία του υποβρύχιου ρεύματος κοντά στον πυθμένα. / In the present thesis, the impact of nearshore, non-breaking waves on the morphological equilibrium of small scale patterns that appear in sandy beds, well-known as ripples, the spilling wave breaking over a bed of constant slope and the wave-induced currents developing in the surf zone, are investigated. Numerical models are developed for the simulation of the aforementioned phenomena, based on the numerical solution of the two/three-dimensional, incompressible, viscous, free-surface flow. The numerical solution of the flow equations, i.e. the Navier-Stokes equations, is accomplished by means of a time-splitting scheme of three stages for the temporal discretization and a hybrid scheme for the spatial discretization, with central finite differences along the streamwise direction and pseudo-spectral approximations, with Fourier modes and Chebyshev polynomials along the spanwise and vertical directions, respectively. The simulations of spilling wave breaking are performed employing the so-called large-wave simulation (LWS) method, according to which, large velocity and free-surface scales are fully resolved, while the effect of subgrid scales is modeled by eddy-viscosity stresses, similar to large-eddy simulation (LES) methodology. The bed morphology evolution, driven by the bed load sediment transport, is simulated by a morphology model, which performs the numerical solution of the sediment mass conservation equation, utilized coupled with the two-dimensional flow model. The bed load transport rate, is computed inserting bed shear stress timeseries (by the flow model) into published empirical formulas that have been modified to fit the characteristics of the investigated cases. For the case of rippled bed, it was found that the structure of the wave boundary layer is substantially influenced by the presence of the ripples, and that for a certain value of the dynamic friction angle/coefficient, which is correlated to the ripple dimensions and the wave characteristics, the ripples remain in quasi-steady equilibrium after each wave period. Wave breaking is investigated by the simulation of normal and oblique to the shoreline propagation, transformation and spilling breaking of incoming Stokes waves, over a bed of constant slope, tanβ = 1/35. Our numerical results are compared to published experimental measurements, and it is found that the LWS model predicts adequately the wave breaking parameters - breaking height, Ηb, and depth, db- and the distribution of the undertow current in the surf zone. The development of the surface roller in the breaking wavefront is also captured, while is connected to the increase of the strength of the sub-grid (SGS) stresses in the outer surf zone (up to d/db ≈ 0.75) and their successive decrease at shallower depths close to the shoreline. For the case of oblique wave breaking, the vorticity and the SGS stresses distribution in the surf zone clearly indicate the gradual breaking along the wave crestline, while the latter (SGS stresses) remain active for about two wavelenghts. Finally, the magnitude of the longshore current is found to be enhanced at shallower depths in the surf zone (d/db < 0.5), while its vertical distribution is affected by the interaction with the undertow current.
59

Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

Qian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
60

A study into forces and moments acting on the swash plate of an axial piston pump using a novel approach to reduce pressure and flow pulsations.

Naik, Pratin J., Seeniraj, Ganesh K., Chandran, Ram S. 25 June 2020 (has links)
In hydraulic pumps, typically in axial piston pumps, reduction of pressure and flow ripples was attempted by providing relief grooves and pre-compression for noise reduction. Pre-compression is normally achieved by using the dead space between pump ports in the valve plate. Also valve plate profile modification is required, if system operating conditions such as pump output pressure and flowrate change, to maintain optimum operating conditions for reduced pressure/flow ripple. An earlier simulation study confirmed effectiveness of varying dead centre position to reduce pressure and flow ripples. A specifically designed mechanism, outlined in the earlier work, achieves this goal by varying the dead centre position of the pump swash plate. This study reports on the findings of the effect of varying dead centre position and groove configurations on forces and moments acting on the swash plate for various operating conditions. The simulation model cited in the earlier work was used in this study. This information is vital for the design of an actuating mechanism to vary dead centre position of a pump valve plate. These simulations were run using MATLAB/Simulink and S-functions. Results of this study are promising.

Page generated in 0.0279 seconds