• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 1
  • 1
  • Tagged with
  • 26
  • 14
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Suporte a rollback em sistemas de gerenciamento de mudanças em TI. / Roolback support in IT change management systems

Machado, Guilherme Sperb January 2008 (has links)
As atuais pesquisas em gerência de mudança em um ambiente de TI (Tecnologia de Informação) têm explorado diferentes aspectos desta nova disciplina, porém normalmente assumindo que as mudanças expressas em documentos de Requisição de Mudanças (RFC – Request for Change) são sempre executadas com sucesso sobre uma determinada infraestrutura de TI. Esse cenário, muitas vezes, pode não refletir a realidade em sistemas de TI, pois falhas durante a execução de mudanças podem ocorrer e não devem ser simplesmente ignoradas. Para abordar esta questão, esta dissertação propõe uma solução onde atividades em um plano de mudança podem ser agrupadas, formando grupos atômicos. Esses grupos são atômicos no sentido de que quando uma atividade falha, todas as outras atividades já executadas do mesmo grupo precisam retroceder para o último estado consistente. Automatizar o processo de rollback em mudanças pode ser especialmente conveniente no sentido de que não seja necessário um operador humano desfazer manualmente as atividades que falharam de um determinado grupo atômico. Para avaliar a solução proposta e a sua viabilidade técnica foi implementado um protótipo que, usando elementos da linguagem BPEL (Business Process Execution Language), torna-se possível definir como sistemas de gerenciamento de mudanças em TI devem se comportar para capturar e identificar falhas. Os resultados mostram que a solução proposta não somente gera planos completos e corretos com base em marcações de atomicidade, mas também que a geração dos planos de rollback interfere minimamente no processo de agendamento de mudanças. / The current research on IT change management has been investigating several aspects of this new discipline, but they are usually carried out assuming that changes expressed in Requests for Change (RFC) documents will be successfully executed over the managed IT infrastructure. This assumption, however, is not realistic in actual IT systems because failures during the execution of changes do happen and cannot be ignored. In order to address this issue, we propose a solution where tightly-related change activities are grouped together forming atomic groups of activities. These groups are atomic in the sense that if one activity fails, all other already executed activities of the same group must rollback to move the system backwards to the previous consistent state. The automation of change rollback is especially convenient because it relieves the IT human operator of manually undoing the activities of a change group that has failed. To prove concept and technical feasibility of our proposed solution, we have implemented a prototype system that, using elements of the Business Process Execution Language (BPEL), is able to control how atomic groups of activities must be handled in IT change management systems. Results showed that the rollback solution not only generates complete and correct plans given a set of atomicity marks, but also that the rollback plan generation minimally interferes in the change scheduling process.
12

Implementação de um mecanismo de recuperação por retorno para a ferramenta ourgrid / Implementation of a rollback recovery mechanism for ourGrid toolkit

Silva, Hélio Antônio Miranda da January 2007 (has links)
A computação em grid (ou computação em grade) emergiu como uma área de pesquisa importante por permitir o compartilhamento de recursos computacionais geograficamente distribuídos entre vários usuários. Contudo, a heterogeneidade e a dinâmica do comportamento dos recursos em ambientes de grid tornam complexos o desenvolvimento e a execução de aplicações. OurGrid é uma plataforma de software que procura contornar estas dificuldades: além de permitir a execução de aplicações distribuídas em ambientes de computação em grid, oferece e gerencia um esquema de troca de favores entre usuários. Neste esquema, instituições (ou usuários) que possuam recursos ociosos podem oferecê-los a outros que deles necessitem. Quanto mais um domínio oferecer recursos ao grid, mais será favorecido quando precisar, ou seja, terá prioridade mais alta quando requisitar máquinas ao grid. O software MyGrid é o principal componente do OurGrid. É através dele que o usuário interage com o grid, submetendo e gerenciando suas aplicações. No modelo de execução do MyGrid, as tarefas são lançadas por um nó central que coordena todo o escalonamento de tarefas que serão executadas no grid. Este nó apresenta uma fragilidade caracterizada na literatura como "ponto único de falhas", pois seu colapso faz com que os resultados do processamento corrente sejam perdidos. Isto pode significar horas ou, até mesmo, dias de processamento perdido, dependendo das aplicações. Visando suprir esta deficiência, este trabalho descreve o funcionamento e a implementação de um mecanismo de checkpointing (ou salvamento de estado), usado como base para a recuperação por retorno, que permite ao sistema voltar a um estado consistente, minimizando a perda de dados, após uma falha no nó central do MyGrid. Assim, ele salva, de forma estável, o estado da aplicação (estruturas de dados e informações de controle imprescindíveis) capaz de restaurar o sistema após o colapso, oferecendo uma alternativa à sua característica de ponto único de falhas. Os checkpoints são obtidos e salvos a cada mudança de estado do escalonador de tarefas do nó central. A eficiência do mecanismo de recuperação é comprovada através de experimentos que exercitam este mecanismo em cenários com diferentes características, visando validar e avaliar o impacto real no desempenho do MyGrid. / The grid computing has emerged as an important research area because it allows sharing geographically distributed computing resources among several users. However, resources in a grid are highly heterogeneous and dynamic, turning complex the development and the execution of applications. OurGrid is a software platform that intends to reduce these difficulties. Besides allowing the execution of distributed applications in grid environments, it offers and gives support to an exchange of favors between users. In this way, institutions (or users) that have idle resources can offer them to other users. The more resources a domain offers to the grid, the more it will be favored when in need. It will have higher priority when requesting machines to grid. MyGrid software is the main component of OurGrid: it constitutes the interface for user interaction as well as application submission and management. In the execution model of MyGrid, tasks are launched by a central node (home-machine), which manages the scheduling of tasks to be executed in the grid. This node constitutes a "single point of failure", because its crash causes the loss of results of the previous processing. Depending on the particular applications, this loss can be the result of hours or days of processing time. This dissertation aims to reduce the consequences of this problem offering an alternative to the single point of failure: here is proposed and implemented a checkpointing mechanism, used as basis for the rollback recovery. Checkpoints are taken synchronously with the state changes of the scheduler on the central node. After a failure affecting the home-machine of MyGrid, the system recovers information on the state of the application (data structures and essential control information) and results of previous computation, saved in stable storage, minimizing the loss of data. The efficiency of the recovery mechanism and its impact over MyGrid are evaluated through experiments that exercise this mechanism in scenarios with different characteristics.
13

Rollback-able Random Number Generators For The Synchronous Parallel Environment For Emulation And Discrete-event Simulation (spe

Narayanan, Ramaswamy Karthik 01 January 2005 (has links)
Random Numbers form the heart and soul of a discrete-event simulation system. There are few situations where the actions of the entities in the process being simulated can be completely predicted in advance. The real world processes are more probabilistic than deterministic. Hence, such chances are represented in the system by using various statistical models, like random number generators. These random number generators can be used to represent a various number of factors, such as length of the queue. However, simulations have grown in size and are sometimes required to run on multiple machines, which share the various methods or events in the simulation among themselves. These Machines can be distributed across a LAN or even the internet. In such cases, to keep the validity of the simulation model, we need rollback-able random number generators. This thesis is an effort to develop such rollback able random number generators for the Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) environment developed by NASA. These rollback-able random number generators will also add several statistical distribution models to the already rich SPEEDES library.
14

New perspective on the transition from flat to steeper subduction in Oaxaca, Mexico, based on seismicity, nonvolcanic tremor, and slow slip

Fasola, Shannon Lee 28 April 2016 (has links)
No description available.
15

Preventing data loss using rollback-recovery : A proof-of-concept study at Bolagsverket

Sjölinder, Max January 2013 (has links)
This thesis investigates two alternative approaches, referred to as automatic- and semi-automatic replay, which can be used to prevent data loss due to a certain set of unforeseen events at Bolagsverket, the Swedish Companies Registration Office. The approaches make it possible to recover the correct data from a database that belongs to a stateless distributed system and that contains erroneous- or inaccurate information due to past faults. Both approaches utilize log-based rollback-recovery techniques but make different assumptions regarding the deterministic behaviour of Bolagsverket’s systems. A stateless distributed system logs all received messages during failure-free operation. During recovery, automatic replay recovers the data by enabling the system to re-process the logged messages. In contrast, semi-automatic replay recovers data by utilizing the logged messages to enable officials at Bolagsverket to manually redo lost work in a controlled manner. Proof-of-concept implementations of the two replay approaches are developed on a simplified model that resembles one of Bolagsverket’s electronic services, yet that is general to any stateless system that communicates asynchronously using JMS messages and synchronously using XML sent over HTTP. The theoretical- and performance evaluation was conducted with the aim of producing results general to any system with similar characteristics to those of the model. The results suggest that the failure-free overhead at Bolagsverket is approximately 100 milliseconds per logged message, and that around 3 gigabytes of data must be stored in order to recover one average day’s operation. Further, automatic replay successfully manages to recover one average day’s operation in around 70 minutes. Semi-automatic replay is calculated to require, at a maximum, one workday to recover the same amount of data. It is assessed that automatic replay is a suitable solution for Bolagsverket if it is proven that their systems are fully deterministic. In other cases, it is assessed that semi-automatic replay can be utilized. It is however recommended that further evaluations are conducted before the approaches are implemented in a production environment.
16

Run-time Variability with Roles

Taing, Nguonly 04 April 2018 (has links)
Adaptability is an intrinsic property of software systems that require adaptation to cope with dynamically changing environments. Achieving adaptability is challenging. Variability is a key solution as it enables a software system to change its behavior which corresponds to a specific need. The abstraction of variability is to manage variants, which are dynamic parts to be composed to the base system. Run-time variability realizes these variant compositions dynamically at run time to enable adaptation. Adaptation, relying on variants specified at build time, is called anticipated adaptation, which allows the system behavior to change with respect to a set of predefined execution environments. This implies the inability to solve practical problems in which the execution environment is not completely fixed and often unknown until run time. Enabling unanticipated adaptation, which allows variants to be dynamically added at run time, alleviates this inability, but it holds several implications yielding system instability such as inconsistency and run-time failures. Adaptation should be performed only when a system reaches a consistent state to avoid inconsistency. Inconsistency is an effect of adaptation happening when the system changes the state and behavior while a series of methods is still invoking. A software bug is another source of system instability. It often appears in a variant composition and is brought to the system during adaptation. The problem is even more critical for unanticipated adaptation as the system has no prior knowledge of the new variants. This dissertation aims to achieve anticipated and unanticipated adaptation. In achieving adaptation, the issues of inconsistency and software failures, which may happen as a consequence of run-time adaptation, are evidently addressed as well. Roles encapsulate dynamic behavior used to adapt players representing the base system, which is the rationale to select roles as the software system's variants. Based on the role concept, this dissertation presents three mechanisms to comprehensively address adaptation. First, a dynamic instance binding mechanism is proposed to loosely bind players and roles. Dynamic binding of roles enables anticipated and unanticipated adaptation. Second, an object-level tranquility mechanism is proposed to avoid inconsistency by allowing a player object to adapt only when its consistent state is reached. Last, a rollback recovery mechanism is proposed as a proactive mechanism to embrace and handle failures resulting from a defective composition of variants. A checkpoint of a system configuration is created before adaptation. If a specialized bug sensor detects a failure, the system rolls back to the most recent checkpoint. These mechanisms are integrated into a role-based runtime, called LyRT. LyRT was validated with three case studies to demonstrate the practical feasibility. This validation showed that LyRT is more advanced than the existing variability approaches with respect to adaptation due to its consistency control and failure handling. Besides, several benchmarks were set up to quantify the overhead of LyRT concerning the execution time of adaptation. The results revealed that the overhead introduced to achieve anticipated and unanticipated adaptation to be small enough for practical use in adaptive software systems. Thus, LyRT is suitable for adaptive software systems that frequently require the adaptation of large sets of objects.
17

Over-The-Air update techniques and how to evaluate them : A comparison of Over-The-Air updates for type ESP-32

Palm, Simon, Bui, Ryan January 2022 (has links)
The Internet of Things (IoT) is a concept where sensors combined with microcontrollers enhance our everyday life. In the year 2050, there will be around 30 billion connected IoT systems, for developing this large amount of systems and maintaining them there will be a need to use over-the-air updates (OTA). With the increasing growth of IoT systems, there will also rise more OTA update solutions as tools for maintaining and enhancing IoT systems. In this bachelor's degree project, evaluations and comparisons of different OTA update techniques supporting microcontrollers of the type ESP32 are done by using controlled experiments. This study focuses on testing the update procedure with experiments that test OTA update deployment time and update rollback functionality.
18

Verslo transakcijų atvaizdavimas duomenų bazės transakcijomis / Representing business transactions as database transactions

Naujokaitis, Giedrius 11 January 2007 (has links)
Pragmatically motivated communicative action loop (CAL) is proposed for modeling business transactions and designing database transactions. Using parameters of the communicative action loops, activity model can be adapted to particular objective area. Selected parameters are utilizable in formation of database transactions that are oriented in modification of states of objects of activity. Performed database transactions are registered to query register in order to make a database rollback when business transactions are canceled. Database transactions are synchronized between two replicated databases.
19

Run-time Variability with Roles

Taing, Nguonly 11 April 2018 (has links) (PDF)
Adaptability is an intrinsic property of software systems that require adaptation to cope with dynamically changing environments. Achieving adaptability is challenging. Variability is a key solution as it enables a software system to change its behavior which corresponds to a specific need. The abstraction of variability is to manage variants, which are dynamic parts to be composed to the base system. Run-time variability realizes these variant compositions dynamically at run time to enable adaptation. Adaptation, relying on variants specified at build time, is called anticipated adaptation, which allows the system behavior to change with respect to a set of predefined execution environments. This implies the inability to solve practical problems in which the execution environment is not completely fixed and often unknown until run time. Enabling unanticipated adaptation, which allows variants to be dynamically added at run time, alleviates this inability, but it holds several implications yielding system instability such as inconsistency and run-time failures. Adaptation should be performed only when a system reaches a consistent state to avoid inconsistency. Inconsistency is an effect of adaptation happening when the system changes the state and behavior while a series of methods is still invoking. A software bug is another source of system instability. It often appears in a variant composition and is brought to the system during adaptation. The problem is even more critical for unanticipated adaptation as the system has no prior knowledge of the new variants. This dissertation aims to achieve anticipated and unanticipated adaptation. In achieving adaptation, the issues of inconsistency and software failures, which may happen as a consequence of run-time adaptation, are evidently addressed as well. Roles encapsulate dynamic behavior used to adapt players representing the base system, which is the rationale to select roles as the software system's variants. Based on the role concept, this dissertation presents three mechanisms to comprehensively address adaptation. First, a dynamic instance binding mechanism is proposed to loosely bind players and roles. Dynamic binding of roles enables anticipated and unanticipated adaptation. Second, an object-level tranquility mechanism is proposed to avoid inconsistency by allowing a player object to adapt only when its consistent state is reached. Last, a rollback recovery mechanism is proposed as a proactive mechanism to embrace and handle failures resulting from a defective composition of variants. A checkpoint of a system configuration is created before adaptation. If a specialized bug sensor detects a failure, the system rolls back to the most recent checkpoint. These mechanisms are integrated into a role-based runtime, called LyRT. LyRT was validated with three case studies to demonstrate the practical feasibility. This validation showed that LyRT is more advanced than the existing variability approaches with respect to adaptation due to its consistency control and failure handling. Besides, several benchmarks were set up to quantify the overhead of LyRT concerning the execution time of adaptation. The results revealed that the overhead introduced to achieve anticipated and unanticipated adaptation to be small enough for practical use in adaptive software systems. Thus, LyRT is suitable for adaptive software systems that frequently require the adaptation of large sets of objects.
20

Fault tolerance for stream programs on parallel platforms

Sanz-Marco, Vicent January 2015 (has links)
A distributed system is defined as a collection of autonomous computers connected by a network, and with the appropriate distributed software for the system to be seen by users as a single entity capable of providing computing facilities. Distributed systems with centralised control have a distinguished control node, called leader node. The main role of a leader node is to distribute and manage shared resources in a resource-efficient manner. A distributed system with centralised control can use stream processing networks for communication. In a stream processing system, applications typically act as continuous queries, ingesting data continuously, analyzing and correlating the data, and generating a stream of results. Fault tolerance is the ability of a system to process the information, even if it happens any failure or anomaly in the system. Fault tolerance has become an important requirement for distributed systems, due to the possibility of failure has currently risen to the increase in number of nodes and the runtime of applications in distributed system. Therefore, to resolve this problem, it is important to add fault tolerance mechanisms order to provide the internal capacity to preserve the execution of the tasks despite the occurrence of faults. If the leader on a centralised control system fails, it is necessary to elect a new leader. While leader election has received a lot of attention in message-passing systems, very few solutions have been proposed for shared memory systems, as we propose. In addition, rollback-recovery strategies are important fault tolerance mechanisms for distributed systems, since that it is based on storing information into a stable storage in failure-free state and when a failure affects a node, the system uses the information stored to recover the state of the node before the failure appears. In this thesis, we are focused on creating two fault tolerance mechanisms for distributed systems with centralised control that uses stream processing for communication. These two mechanism created are leader election and log-based rollback-recovery, implemented using LPEL. The leader election method proposed is based on an atomic Compare-And-Swap (CAS) instruction, which is directly available on many processors. Our leader election method works with idle nodes, meaning that only the non-busy nodes compete to become the new leader while the busy nodes can continue with their tasks and later update their leader reference. Furthermore, this leader election method has short completion time and low space complexity. The log-based rollback-recovery method proposed for distributed systems with stream processing networks is a novel approach that is free from domino effect and does not generate orphan messages accomplishing the always-no-orphans consistency condition. Additionally, this approach has lower overhead impact into the system compared to other approaches, and it is a mechanism that provides scalability, because it is insensitive to the number of nodes in the system.

Page generated in 0.0487 seconds