• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 1
  • Tagged with
  • 32
  • 32
  • 29
  • 17
  • 17
  • 17
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High Quality Rolled-Up Microstructures Enabled by Silicon Dry Release Technologies

Saggau, Christian Niclaas 24 August 2022 (has links)
Micro-technology relies on a highly parallel fabrication of 2D electronic and/or microelectromechanical devices, where in most cases silicon wafers are used as substrates. In contrast 3D fabrication shows unique advantages, such as footprint reduction or the possibility to obtain additional functionalities. For example, in the case of a sensor, knowledge of the acceleration in all possible directions, the surrounding electric or magnetic field among other quantities can help to determine the exact position of an object in 3D space. To do that it is crucial to retrieve all components of a vector field, which requires at least one out of plane component. In other fields like integrated optics three dimensional structures can enhance the coupling efficiency with free space interactions. As such 3D micro-structures will be crucial for upcoming products and devices. A highly parallel fabrication is required to enable mass-adaption, self-assembly is an emerging technology that could deliver this purpose. Examples of 3D structures created by self-assembly include polyhedrons like cubes, pyramids or micro tubular structures such as tubes or spirals. Following a self assembly scheme, 3D devices would be created through the fabrication of standard 2D structures that are reshaped through a self-assembly step into a 3D object. In this thesis a novel dry release protocol was developed to roll-up strained nanomembranes from a silicon sacrificial layer employing dry fluorine chemistry. This way a wet release is totally circumvented thus preventing damage of the created structures due to turbulent flow or capillary forces. Additionally the developed process enabled the use of standard CMOS deposition and processing tools, leading to a high increase in yield and quality, with yields exceeding 99% for microtubes. Building on the developed technology various devices where fabricated, for example rolled-up micro capacitors at a wafer scale with an increased yield and a low spread of electrical characteristics. For the E12 industrial standard more than 90% of devices behaved within the required performance characteristics. Furthermore the yield and Q-factor of roll-up whispering gallery mode resonators was strongly improved, making it possible to self assemble 3D coupled photonic molecules, which showed a mode splitting exceeding the FSR, as well as hybrid supermodes at points of energy degeneracy.:Contents Bibliographic Record i List of Abbreviations vii List of Chemical Substances ix 1 Introduction 1 1.1 Microelectromechanical Systems 1 1.2 Strain Engineering 2 1.3 Rolled - Up Nanotechnology 3 1.4 Objective and Structure of the Thesis 5 2 Materials and Methods 9 2.1 Fabrication Techniques 9 2.1.1 Substrates 9 2.1.2 Plasma Enhanced Chemical Vapor Deposition 9 2.1.3 Dry Etching12 2.1.4 Deep Reactive Ion Etching 18 2.1.5 Atomic Layer Deposition 19 2.1.6 Lithography 20 2.2 Characterization Techniques 22 2.2.1 Strain Measurement 22 2.2.2 Ellipsometry 23 3 Dry Roll-Up of Strained Nanomembranes 25 3.1 Rolled - Up Nanotechnology 25 3.2 Fabrication 26 3.2.1 Release 29 3.3 Conclusions 33 4 Rolled-UpMicro Capacitors 35 4.1 Micro Capacitors 35 4.2 Fabrication 38 4.3 Characterization 39 4.4 Conclusion 41 5 Optical Micro-Cavities 43 5.1 Optical Micro Cavities 43 5.2 Theorectical Background 45 5.2.1 Quality - factor 49 5.2.2 FDTD 52 6 Optical Microtube Resonators 55 6.1 Optical Whispering Gallery Mode Microtube Resonators 55 6.2 Fabrication 57 6.3 Active Characterization 60 6.4 Conclusions 64 7 Photonic Molecules 65 7.1 Coupled Photonic Systems 65 7.2 Fabrication 68 7.3 Device Characterization 71 7.4 Multimode Waveguides 84 7.5 Conclusions 85 8 Conclusions and Outlook 87 8.1 Conclusions 87 8.2 Outlook 88 Bibliography 91 List of Figures 109 List of Tables 117 A Equipment 119 Cover Pages 121 Selbstständigkeitserklärung 123 Acknowledgements 125 List of Publications 127 List of Presentations 129 Curriculum Vitae 131
32

Self-assembled rolled-up devices: towards on-chip sensor technologies

Smith, Elliot John 29 August 2011 (has links)
By implementing the rolled-up microfabrication method based on strain engineering, several systems are investigated within the contents of this thesis. The structural morphing of planar geometries into three-dimensional structures opens up many doors for the creation of unique material configurations and devices. An exploration into several novel microsystems, encompassing various scientific subjects, is made and methods for on-chip integration of these devices are presented. The roll-up of a metal and oxide allows for a cylindrical hollow-core structure with a cladding layer composed of a multilayer stack, plasmonic metamaterial. This structure can be used as a platform for a number of optical metamaterial devices. By guiding light radially through this structure, a theoretical investigation into the system makeup of a rolled-up hyperlens, is given. Using the same design, but rather propagating light parallel to the cylinder, a novel device known as a metamaterial optical fiber is defined. This fiber allows light to be guided classically and plasmonically within a single device. These fibers are developed experimentally and are integrated into preexisting on-chip structures and characterized. A system known as lab-in-a-tube is introduced. The idea of lab-in-a-tube combines various rolled-up components into a single all-encompassing biosensor that can be used to detect and monitor single bio-organisms. The first device specifically tailored to this system is developed, flexible split-wall microtube resonator sensors. A method for the capturing of embryonic mouse cells into on-chip optical resonators is introduced. The sensor can optically detect, via photoluminescence, living cells confined within the resonator through the compression and expansion of a nanogap built within its walls. The rolled-up fabrication method is not limited to the well-investigated systems based on the roll-up from semiconductor material or from a photoresist layer. A new approach, relying on the delamination of polymers, is presented. This offers never-before-realized microscale structures and configurations. This includes novel magnetic configurations and flexible fluidic sensors which can be designed for on-chip and roving detector applications.

Page generated in 0.0217 seconds