• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 44
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 142
  • 142
  • 92
  • 60
  • 32
  • 28
  • 26
  • 26
  • 23
  • 22
  • 22
  • 19
  • 18
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Nondormant Alfalfa Varieties for Arizona 2017

Ottman, Mike 09 1900 (has links)
2 p. / Alfalfa varieties differ in fall dormancy, defined as growth during the fall. Nondormant alfalfa varieties are usually planted in mild winter areas for their ability to grow in the fall. However, fall growth of nondormant alfalfa may be undesirable in areas subject to repeated frosts or freezes. Nondormant, very nondormant, and extremely nondormant alfalfa varieties (fall dormancy class 8, 9, and 10) are adapted to elevations below 4000 feet in Arizona. Other dormancy classes not included in this publication are moderately nondormant varieties (fall dormancy class 7) which may be grown from 3000 to 5000 feet, and semi-dormant and dormant varieties (fall dormancy 6 and below) which are adapted to colder winter areas above 4000 feet.
82

Estudo da interação entre aveia branca e Meloidogyne incognita patogenicidade e expressão gênica diferencial /

Marini, Patrícia Meiriele January 2018 (has links)
Orientador: Silvia Renata Siciliano Wilcken / Resumo: Meloidogyne incognita é considerado um dos nematoides de maior importância econômica em termos mundiais. Para seu adequado manejo, uma das estratégias mais eficientes é o uso de cultivares resistentes. Portanto, estratégias para otimizar os programas de melhoramento genético são necessárias. A análise de expressão gênica tem ampliado a compreensão dos mecanismos de interação planta-nematoide e acelerado o desenvolvimento de genótipos resistentes. A cultivar de aveia branca IPR Afrodite, resistente a M. incognita, e cultivares suscetíveis foram avaliadas em relação à sua tolerância a este nematoide, além de ter sido estudado o comportamentode genes candidatos que regulam sua resistência, desafiados com densidades populacionais iniciais crescentes de M. incognita, durante o seu estabelecimento e manutenção do parasitismo. Para a avaliação da tolerância, plantas cultivadas em vasos de 3.600 cm3 foram inoculadas com 0,0625 (187,5); 0,125 (375); 0,25 (750); 0,5 (1500); 1 (3000); 2 (6000); 4 (12000); 8 (24000); 16 (48000) e 32 (96000) exemplares por cm3 de solo e avaliadas aos 67 dias após a inoculação (DAI), através da mensuração do desenvolvimento das plantas, além da multiplicação do nematoide. Os resultados mostraram que, em densidades menores, IPR Afrodite apresentou fator de reprodução próximo a 1,0, sugerindo menor expressão da resistência. Em função desses resultados, experimento semelhante foi conduzido para análise da expressão gênica dessa cultivar ao nematoide, com aval... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Meloidogyne incognita is considered one of the main economic important nematodes worldwide. For its management, the use of resistant cultivars is amongst the more efficient strategy. Therefore, strategies to optimize the genetic breeding programs are necessary. The gene expression analysis has amplified the comprehension about the mechanisms involved in the plant-nematode interaction and accelerated the development of resistant genotypes. The oat cultivar IPR Afrodite, resistant to M. incognita, and cultivars suscetibles was evaluated in relation to its tolerance to this nematode and, besides, the behavior of candidate genes regulating the resistance reaction was studied, challenged with crescent initial population densities of M. incognita, during its establishment and parasitism maintenance. To tolerance evaluation, plants cropped in 3,600 cm3 -pots were inoculated with 0,0625 (187,5); 0,125 (375); 0,25 (750); 0,5 (1500); 1 (3000); 2 (6000); 4 (12000); 8 (24000); 16 (48000) e 32 (96000) exemplars.cm-3 of soil and evaluated at 67 days after inoculation (DAI), through the mensuration of the plant development and nematode multiplication. Results showed that, in lower densities, IPR Afrodite showed reproduction factor values closed to 1.0, suggesting a lower resistance expression. In face of these results, a similar experiment was conducted to gene expression analysis of this cultivar to nematode, with evaluations at 0 (immediately before inoculation), 2 and 9 DAI. From RT-qPCR... (Complete abstract click electronic access below) / Doutor
83

Responses of tomato plant growth and root-knot nematodes to phytonematicides from fermented fresh fruits of two indigenous cucumis species

Tseke, Pontsho Edmund January 2013 (has links)
Thesis (M.Sc. (Plant Production)) -- University of Limpopo, 2013 / Two phytonematicides were researched and developed from fermented crude extracts of wild watermelon (Cucumis africanus) and wild cucumber (Cucumis myriocarpus) fruits for use as alternatives to methyl bromide in managing root-knot (Meloidogyne species) nematodes in tomato (Solanum lycopersicum) production. Fruits of C. africanus contain cucurbitacin B (C32H48O8), while those of C. myriocarpus contain cucurbitacin A, which comprises cucumin (C27H40O9) and leptodermin (C27H38O8). Phytonematicides from C. africanus and C. myriocarpus fruits are referred to as nemafric-B and nemarioc-A, respectively. The two phytonematicides, due to their origin from plant species with allelochemicals, have high potential of being phytotoxic to crops. The use of the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model assisted in the establishment of concentrations which were stimulatory to growth of tomato (Solanum lycopersicum) plants, while exhibiting nematoxic properties to Meloidogyne species. The two phytonematicides were developed from crude extracts of fruits dried at 52˚C in air-forced ovens and ground in a Wiley mill through 1-mm-opening sieves. However, equipment for drying and grinding fruits would not be accessible to smallholder farmers who wished to prepare their own products on-farm. The objective of this study therefore, was to determine whether nemafric-BL and nemarioc-AL produced from fresh fruit of the two Cucumis species would be suitable for use (i.e. non phytotoxic) in tomato production for managing population densities of M. incognita race 2. In order to distinguish the products of fresh (F) fruits from those of dried (D) fruits, they were code-named nemafricF-BL or nemariocF-BL and nemafricD-BL or nemariocD AL, respectively, where G and L denoted granular and liquid formulations, respectively. Tomato cv. ‘Floradade’ seedlings were infested with 3 000 eggs and second-stage xv juveniles of M. incognita race 2. An equivalent of 40 g and 80 g dried fruit mass of nemafric-B and nemarioc-A, namely, 284 g and 411 g fresh fruit mass for nemafric-B and nemarioc-A, respectively, were separately fermented using EMROSA effective micro-organisms mixed with 16 L chlorine-free tapwater in 20 L container for 14 days at ± 25˚C, allowing pH to gradually decline to ± 3.7. Separate experiments for each product run concurrently. Treatments, namely, 0, 2, 4, 8, 16, 32 and 64% concentrations, where for instance, 2% = 20 ml/1000 ml x 100, were arranged in a randomised complete block design, with 10 replications. Blocking in the greenhouse was done for wind direction which was regularly erected by fans for cooling down the greenhouse. At 56 days after weekly application of each treatment, flower number, fruit number, dry shoot mass, dry root mass, dry fruit mass, plant height, stem diameter and nematode numbers were each subjected to analysis of variance. Nematode data were, prior to analysis, transformed using log10(x + 1), but untransformed data were reported. Using the sum of squares, nemafric-BL and nemarioc-AL treatments affected dry root mass, dry shoot mass, flowers number, fruit number, plant height and stem diameter. Nemafric-BL contributed 67%, 78%, 58%, 43%, 60% and 26%, while nemarioc-AL contributed 71%, 61%, 19%, 35%, 34% and 24% to total treatment variation of the six respective variables. Plant variables with significant (P ≤ 0.05) treatment effects were further subjected to the CARD model to generate seven biological indices, with three distinct phases, namely, stimulation, neutral and inhibition phases. Using the quantified stimulation phase, the mean concentration stimulation range (MCSR) was computed for each variable using two biological indices, namely, threshold stimulation point (Dm) and saturation point (Rh). The CARD model explained 98%, 99%, 98% and 98% of the quadratic models of dry root mass, dry shoot mass, plant height and stem diameter, xvi respectively, against increasing concentrations of nemarioc-AL. Similarly, the CARD model explained 99%, 96%, 84% and 93% of total treatment variation in the respective plant variables. The integrated MCSR [MSCR = Dm + (Rh/2)] for nemafric-BL on tomato plants was 7%, while that for nemarioc-AL was 4%. In the CARD model, the overall sensitivities (∑k) of tomato plants exposed to nemafric-BL and nemarioc-AL were 3 units and 5 units, respectively. Tomato plants were therefore, less sensitive to nemarioc-AL since it had higher ∑k value than nemafric-BL. At 4% nemarioc-AL and at 7% nemafric-BL, the two phytonematicides were each highly suppressive to population densities of M. incognita race 2. In conclusion, on the basis of non-phytotoxicity of the computed MCSR values and their suppressive effects on population densities of M. incognita race 2, the smallholder farmers could produce nemafric-BL and nemarioc-AL phytonematicides on-farm. However, the production of the two products from fresh fruits would not be sustainable since fruits of the two Cucumis species are highly seasonal due to the high incidence of post-harvest decays. / The Land Bank Chair of Agriculture – University of Limpopo, Limpopo Agro-processing Technology Station,and the Flemish Interuniversity Council of Belgium
84

Mechanism of resistance to Meloidogyne Incognita and Meloidogyne Javanica in Cucumis Africanus and Cucumis myriocarpus seedlings

Ramatsitsi, Mukondeleni Ndivhuwo January 2017 (has links)
Thesis (M.Sc. (Horticulture)) -- University of Limpopo, 2017. / Root-knot (Meloidogyne species) nematodes are economically destructive pathogens of over 3000 species, whereas others have resistance to Meloidogyne species. Wild watermelon (Cucumis africanus) and wild cucumber (Cucumis myriocarpus) are highly resistant to Meloidogyne species, particularly M. incognita and M. javanica. The two Cucumis species are used in inter-generic grafting with watermelon (Citrullus lanatus) as nematode resistant rootstocks. Also, the two Cucumis species are used in traditional medicine and in plant-parasitic nematode management as phytonematicides. The form of nematode resistance, which is essential in plant breeding, is not documented for the two Cucumis species. The objective of this study was to determine the form of nematode resistance in the two Cucumis species to M. incognita and M. javanica under greenhouse conditions. Four parallel experiments were each conducted under greenhouse conditions. Uniform six-week old Cucumis seedlings were transplanted into 250 ml polystyrene cups filled with 200 ml growing medium of steam-pasteurised fine sand. A week after transplanting, Cucumis seedlings were each infested by dispensing approximately 100 M. incognita second-stage juveniles (J2) or M. javanica J2 using a 20 ml plastic syringe by placing into 5-cm-deep furrow around the seedling stem and covered with growing medium. Treatments (periodic harvest intervals) were arranged in a randomised complete block design, replicated five times. Five seedlings from each experiment were harvested every second day, for 30 days, with stained roots being assessed for necrotic spot (suberised cells) number, giant cell number, proliferation of rootlet interference number and root gall number. Periodic harvest intervals were highly significant (P ≤ 0.01) on necrotic spot number, proliferation of rootlet interference number and root gall number in C. africanus-M. incognita relations, but were not significant for giant cell number. Treatments contributed 59, 64 and 50% in total treatment variation (TTV) of necrotic spot number, proliferation of rootlet interference number and root gall number, respectively. Harvest period had highly significant effects on necrotic spot number, giant cell number, proliferation of rootlet interference number and root gall number in C. africanus-M. javanica relations. Treatments contributed 55, 71, 63 and 59% in TTV of necrotic spot number, giant cell number, proliferation of rootlet interference number and root gall number, respectively. Periodic harvest intervals were significant (P ≤ 0.05) on giant cell number and highly significant on root gall number in C. myriocarpus-M. incognita relations. However, there were no significant treatment differences on necrotic spot number and proliferation of rootlet interference number. Treatments contributed 57 and 57% in TTV of root gall number and giant cell number, respectively. Harvest period had highly significant effects on giant cell number, proliferation of rootlet interference number and root gall number, but were not significant on necrotic spot number in C. myriocarpus-M. javanica relations. Treatments accounted for 67, 49 and 53% in TTV of giant cell number, proliferation of rootlet interference number and root gall number, respectively. In conclusion, the mechanism of resistance to M. incognita and M. javanica in both C. africanus and C. myriocarpus was post-infectional nematode resistance, which has attributes for introgression into commercial nematode-susceptible Cucumis cultivars. / Agricultural Research Council (ARC), National Research Foundation of South Africa; and the ARC-Universities Collaboration Centre for Smallholder Farmers
85

The interaction between root knot nematodes (Meloidogyne spp.) and soft rot Enterobacteriaceae (Pectobacterium spp.) and their host Solanum tuberosum

Mongae, Aobakwe Oratile January 2013 (has links)
Meloiodgyne incognita, one of the most aggressive plant parasitic nematodes species on potato in South Africa, belongs to a group of plant parasitic nematodes commonly known as root knot nematodes (RKN). This group of nematodes is widely distributed throughout the world. Meloidogyne spp. cause major economic losses to important crops such as potato and therefore decrease their market value in many countries across the world. The second stage juveniles are the only mobile and infective phase of the root knot nematode. As they infect host roots, they create wounds that can be used by other plant pathogens to penetrate the host in large numbers. The most effective management strategy for root knot nematodes is the use of nematicides such as Temik and Methyl bromide. However, these have been banned due to adverse on the environment. Therefore, Meloidogyne spp. will inevitably become a big problem in the potato industry of many countries due to the lack of effective alternatives to banned chemicals. Pectobacterium carotovorum subsp. brasiliensis (Pcb) is one of the most important soft rot-causing agents in South Africa. This pathogen belongs to a group of pathogens commonly known as soft rot Enterobacteriaceae (SRE). Bacteria belonging to this group of pathogens are known to cause soft rot and blackleg diseases on potato and other crops. Pcb is known as an opportunistic pathogen that can only penetrate host root tissue through natural openings or wounds that result from a variety of agents. Post penetration, the bacteria will increase in number and cause soft rot and blackleg. As rotting plant tissue disintegrates the bacteria escapes into the soil where it serves as inoculum and can infect healthy hosts. Many interactions have been documented between Meloidogyne spp. and other plant pathogens but to our knowledge there are no interactions that have been reported between Meloidogyne spp. and Pectobacterium spp. Considering the life cycles of RKN and SRE, we hypothesised that there could be an interaction between the two pathogen groups. Since both RKN and SRE are potato pathogens, they share the same space in the rhizosphere. This likely can lead to synergies and complex formation between the two pathogens. Likely, the wounds created by RKN J2s as they penetrate plant tissue can potentially be used by opportunistic Pcb to infect various hosts. It is from these identified overlaps that the first part of this study focused on investigating the potential interaction between M. incognita and Pcb. The first objective was to determine whether Pcb can attach onto M. incognita J2s and, if this was the case, to determine whether the J2s can disseminate the bacteria as they move around in the environment. The second objective was to determine whether there is a synergistic interaction between RKN and SRE and the combined effect of the two pathogens on their host Solanum tuberosum cv Mondial. The results obtained in the first part of the study strongly suggested that Pcb can attach onto M. incognita J2s and can be disseminated as the J2s move around in the environment. Thus, this indicated that there is a synergistic interaction between M. incognita and Pcb as there was increased disease severity and incidence in plants inoculated with both pathogens compared to those inoculated with individual pathogens. Significantly higher Pcb concentrations were found in plants inoculated with both pathogens. There was no breakage of tolerance to Pcb-caused blackleg on an otherwise resistant cultivar, BP1. The second aim of this study was to determine whether the induction of natural resistance using environmentally friendly resistance inducing chemicals can potentially be used as an alternative to chemical control. To this end, the effect of three inducers at different concentrations, amongst DL-β-aminobutyric acid, Acibenzolar-s-methyl and Messenger on potato plants infected with RKN was compared. The most effective resistance inducer amongst the three was 20mM BABA as it was able to reduce the number of J2s that penetrated host tissue, the number of females in the roots and the rate of egg production. Furthermore, the galling index observed in potato roots was significantly lower when plants were treated with 20mM BABA. Additionally, the reduced rate of RKN infection in plants primed with 20mM led to a decrease in the rate of Pcb infection. / Dissertation (MSc)--University of Pretoria, 2013. / gm2013 / Microbiology and Plant Pathology / Unrestricted
86

Molecular characterization of root-knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa

Onkendi, Edward Makori 16 May 2013 (has links)
Potato (Solanum tuberosum) is regarded as one of the single most important vegetable crops in South Africa, with an average annual production of 2 million metric tons. The potato industry contributes to an average of $ 0.37b worth of potatoes annually. Over the years, potato production in South Africa has been affected by, among other factors, diseases and plant parasitic nematodes particularly root-knot nematodes (Meloidogyne spp.). In infected potato fields, root-knot nematodes cause great damage to the crop leading to substantial losses in yield and compromised produce quality. The direct and indirect damage caused by Meloidogyne species results in revenue loss due to a high number of table and processing potatoes rejected in markets both locally and internationally. The presence of resistance breaking Meloidogyne populations, the withdrawal of methyl bromide and lack of commercially grown resistant cultivars suggests that growers are likely to experience more losses in the future. Furthermore, distribution of seed tubers harbouring root-knot nematodes, which may also be asymptomatic, inadvertently facilitates transmission of these parasites to new areas thus perpetuating the problem. Therefore, for the potato industry to adequately address the threat of root-knot nematodes, accurate identification and quantification of root knot nematode levels in the field as well as in seed tubers is of importance. Currently most methods of identifying Meloidogyne species largely rely on the use of morphological traits. However, it can be a challenge to accurately differentiate between closely related species using morphology and other classical methods. To resolve this, recent trends globally have focused on the development of DNA-based diagnostics to rapidly and accurately identify different Meloidogyne species. This study therefore sought to; (a) develop a PCR-based diagnostic tool for accurate detection and identification of various Meloidogyne species parasitizing potatoes in South Africa; (b) use this tool to map their distribution and; (c)develop real-time PCR (qPCR) techniques for accurate quantification and characterization of tropical Meloidogyne species from infected potato tubers. In this study, of the 78 composite potato tuber samples collected from various potato growing regions across seven provinces, 24% were found infected with M. javanica, 23% with M. incognita, 17% with M. arenaria, 14% with M. enterolobii, 3% M. chitwoodi, 1% M. hapla and 1% as M. artiellia. The identity of the remaining 17% could not be established. The three tropical species; M. javanica, M. incognita and M. arenaria were identified as the dominant species, occurring almost in every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu–Natal respectively while M. chitwoodi was isolated from two growers located within the Free State. In the study the use of HRMC and real-time PCR was also developed for identification and quantification of tropical Meloidogyne species infesting potato tubers. Using these two techniques, we were able to show that Meloidogyne arenaria populations produced specific melting peaks (79.3183± 0.0295°C, P < 0.05) thus distinguishing themselves from M. incognita (79.5025± 0.0224°C, P < 0.05) and M. javanica (79.96 ± 0.0459°C, P < 0.05). Real-time PCR was also able to detect 1.53/100th of a nematode using second stage juveniles. / Dissertation (MSc)--University of Pretoria, 2012. / Microbiology and Plant Pathology / unrestricted
87

Caractérisation des petits ARN régulateurs impliqués dans la formation des cellules géantes induites par les nématodes phytoparasites du genre Meloidogyne / Characterization of small regulatory RNA involved in the development of giant cells induced by plant parasitic nematodes of the genus Meloidogyne

Medina, Clémence 03 July 2017 (has links)
Les nématodes à galles du genre Meloidogyne sont des parasites obligatoires des plantes capables d’infecter un large panel de plantes d’intérêt agronomique. Ces parasites ont la capacité d’induire la différenciation de cinq à sept cellules racinaires en cellules géantes, hypertrophiées, métaboliquement actives et multinucléées. Ces cellules géantes constituent le site nourricier indispensable au nématode, et sur lequel il va s’alimenter jusqu’à sa reproduction. Le développement de ces cellules entraine une déformation racinaire appelée « galle » qui va perturber l’absorption de nutriments de la plante et l’affaiblir. Des études transcriptomiques ont montré qu’une vaste reprogrammation transcriptionnelle a lieu lors de la formation de la galle. Cette thèse vise à caractériser le rôle des petits ARN, des ARN non codants, au cours de la formation des galles induites par M. incognita. Les petits ARN non codants sont des régulateurs clés de l’expression génique et comprennent deux grandes familles : les microARN (miARN) et les petits ARN interférents (siARN). Pour cela, les petits ARN de racines de la plante modèle Arabidopsis thaliana saines et infectées par le nématode à galle M. incognita ont été caractérisés par séquençage haut débit à 7 et 14 jours après infection, deux stades importants du développement des cellules géantes. Cette étude a permis d’identifier 24 miARN d’Arabidopsis différentiellement exprimés dans les galles en comparaison aux racines non infectées. L’analyse fonctionnelle de ces miARN a permis de valider le profil d’expression dans les galles de cinq miARN et de démontrer le rôle de miR159 dans la réponse de la plante à M. incognita. De plus, une approche pangénomique a été réalisée afin d’identifier les gènes susceptibles d’être régulés par les siARN lors de l’interaction. En conclusion, ce travail a contribué à démontrer d’une part l’implication des miARN dans l’interaction plante - nématode à galles et a permis l’identification des gènes potentiellement régulés par les siARN lors de l’interaction et impliqués dans la formation des cellules géantes induites par les nématodes à galles. / Root-Knot-Nematodes are obligate plant parasites able to infect a large panel of cultivated plants. These parasites have the ability to induce redifferentiation of five to seven root cells into specialized giant cells, hypertrophied, multinucleated and metabolically overactive. These giant cells form the feeding site upon which nematodes feed continuously until reproduction. Giant cells development leads to a root deformation, named gall, which disturbs plant nutrients absorption causing its weakening. Transcriptomic studies showed that a huge transcriptional reprogramming occurs during gall development. This project aims to characterize the role of small RNAs, non-coding RNAs, during gall development induced by M. incognita. Small non-coding RNAs are key regulators of gene expression and include two major families: microRNAs (miRNAs) and small interfering RNAs (siRNAs). Thus, small RNAs from roots of the model plant Arabidopsis thaliana healthy or infected by M. incognita were characterized by Next Generation Sequencing at 7 and 14 days after infection, two important stages of gall development. This study led to the identification of 24 plant microRNAs differentially expressed in galls compared to uninfected roots. Functional analysis of these miRNAs validated the expression pattern in galls of five miRNAs and demonstrated the role of miR159 in the plant response to M. incognita. In addition, a genome-wide approach was used to identify genes that could be regulated by siRNAs during the interaction. In conclusion, this work contributed todemonstrate, on one hand, the involvement of microRNAs in the plant - RKN interaction and allowed the identification of genes potentially regulated by small interfering and involved in the formation of giant cells induced by root-knot nematodes.
88

Rhizomodulation for tomato growth promotion and management of root knot nematodes using Pochonia chlamydosporia and chitosan

Escudero Benito, Nuria 13 November 2015 (has links)
No description available.
89

Interactive effects of meloidogyne species and sugarcane aphid (melanaphis sacchari) on nematode resistance in sweet stem sorghum and effects of terpenoid-containing phytonematicides on both pests

Maleka, Koena Gideon January 2020 (has links)
Thesis (Ph.D. Agriculture (Plant Production)) -- University of Limpopo, 2020 / Worldwide, both root-knot (Meloidogyne species) and sugarcane aphid (Melanaphis sacchari Zehntner), are economic pests on sugarcane and sorghum crops. In most cases, each of the two pests is managed using host plant resistance due to the economic benefits derived from this management strategy. The highly nematode resistant sweet stem sorghum (Sorghum bicolor L.) cv. 'Ndendane-X1' used in ethanol production, is highly sensitive to sugarcane aphid, with some indication that the latter could interfere with nematode resistance in the sorghum cultivar. This study had four objectives which collectively intended to investigate the interactive effects of infection by three Meloidogyne species and infestation by aphid under different conditions on resistance to nematode in a nematode-resistant sorghum cultivar. The research objectives were achieved through four trials. In each trial a 2 × 2 factorial experiment, each with and without nematode and aphid as first and second factors, respectively, were conducted. Treatments were arranged in a randomised complete block design, with six replications, and each experiment validated in time. At 150 days, after emergence, the nematode × aphid interaction significantly reduced sucrose by 17, 74 and 42% in Meloidogyne enterolobii, Meloidogyne incognita and Meloidogyne javanica trials, respectively. Aphid infestation of sorghum significantly increased the reproductive potentials of the three respective Meloidogyne species by 196, 320 and 152%, but significantly, reduced plant growth variables from 20-44 and 48-51% in two respective trials. The mineral nutrients S and Zn were reduced in leaf tissues of the test cultivar in Trial 1, whereas Ca and Zn were respectively reduced by 24 and 51% in Trial 2 and by 52 and 51% in Trial 3. Since the reproductive potential values for Meloidogynqe species on the test sorghum cultivar were greater than unity and nematode infection reduced the plant variables, cv. 'Ndendane-X1' lost resistance to xx the test Meloidogyne species. In achieving Objective 2, procedures were similar to those in Objective 1 except that the study was conducted under field conditions under mixed nematode populations of M. enterolobii, M. incognita and M. javanica. Sorghum seedlings were raised at 0.3 m × 0.3 m inter and intra row spacings. Soon after emergence, plants were thinned to one per station, randomly selected for nematode and nematode-aphid treatments. Mixed populations of Meloidogyne species (M. enterolobii, M. incognita and M. javanica) at approximately 1:1:1 (v/v) ratio were applied at 300 eggs + J2 per plants after thinning at the five plants which were used as nematode alone treatments. The latter were also infested with 20 sugarcane aphids to constitute a nematode + aphid treatments. Buffer zone plants separating the treatments were monitored for aphids and stock borer, which were sprayed when necessary. At 150 days after infestation, relative to nematode alone, nematode-aphid significantly reduced degrees Brix from 13% to 61%, but significantly increased the reproductive potential of mixed Meloidogyne species and root galls by 279 and 199%, respectively. Also, the combined effect significantly reduced plant growth variables from 35 to 55% and the mineral nutrient elements in leaf tissues of the cultivar from 33 to 73%. At 150 days after the treatment, the second and first order interaction (Nemarioc-AL × Nemafric-BL × Mordica and Nemafric-BL × Mordica) had significantly increased sucrose content from 48 to 66%, increased plant growth variables from 49 to 163%, increased accumulation of certain nutrient elements from 164 to 206%. The terpenoid-containing phytonematicides could have potential future application in the husbandry of ethanol-producing sweet stem sorghum cultivars in relation to increasing sucrose above the 16% minimum for premium delivery fees and increased plant growth. Under field conditions, in pest-free condition (Objective 3), drenched terpenoid-containing phytonematicides significantly increased sucrose content at xxi middle and bottom part of SSS cv. 'Ndendane-X1' by 66 and 48%. However, these products did not significantly increase plant variables, except tiller number, which was increased by 163 under first order interaction from Nemafric-BL and Mordica phytonematicides. Similarly, nutrient elements variables had generally not been increased by the interaction of these products, except Ca and K, which were increased by 206 and 164%. In achieving Objective 4, a 2 × 2 × 2, with the first, second and third factor being Nemarioc-AL (with and without), Nemafric-BL (with and without) and Mordica (with and without) phytonematicides, respectively. on sorghum cultivar infected with a mixture of Meloidogyne species and infested with aphids, under microplot conditions, untreated control sucrose content remained below the standard of 16 degrees Brix, whereas the second order interaction increased the variable far above the standard, along with various plant growth variables also increased. However, both nematode and aphid population densities were significantly reduced by the interactions. Findings in this thesis constituted the first report where aphid infestation broke resistance to Meloidogyne species in sweet stem sorghum cv. 'Ndendane-X1'. Therefore, the successful use of nematode resistance in the cultivar in areas with high nematode population densities would depend upon the effective management of the sugarcane aphid population densities. Also, the three terpenoid-containing phytonematicides would when combined or used alone have the potential future in the husbandry of sweet stem sorghum cultivars intended for ethanol production and suppression of nematode population densities / National Research Foundation (NRF)
90

Assessment of Root-Knot Nematode Presence in Tomatoes in Ohio, Yield Loss, and Biocontrol

Bosques Martínez, Marlia 24 September 2020 (has links)
No description available.

Page generated in 0.0456 seconds