Spelling suggestions: "subject:"grounding""
31 |
A heuristic approach to supply chain network design in a multi-commodity four-echelon logistics systemFarias, Everton da Silveira January 2016 (has links)
Nesta tese propõe-se um método heurístico para o problema de Projeto de Rede da Cadeia de Suprimentos (Supply Chain Network Design) considerando vários aspectos de relevância prática, tais como: fornecedores e matérias-primas, localização e operação de instalações, atribuição de Centros de Distribuição (CD), e grande número de clientes e produtos. Uma eficiente abordagem heurística de duas fases é proposta para a obtenção de soluções viáveis para os problemas, que inicialmente é modelado como um Programa Linear Inteiro Misto (PLIM) de grande escala. Na fase de construção, uma estratégia de Linear Programming Rounding é aplicada para se obter os valores iniciais para as variáveis de localização inteira do modelo. Simultaneamente, um método Multi-start foi desenvolvido para gerar soluções iniciais diversificadas para cada nova iteração da heurística de Rounding. Na segunda fase, dois procedimentos de Busca Local foram desenvolvidos no sentido de melhorar a solução fornecida pelo método de Rounding. Implementamos duas diferentes abordagens de Busca Local: remoção-inserção e troca. Uma técnica de Busca Tabu para orientar o procedimento de Busca Local para explorar os diferentes espaços de soluções foi desenvolvida. As formulações e algoritmos foram implementados na linguagem C++ utilizando ferramentas de otimização da COIN-OR. O método de solução foi experimentado em instâncias geradas aleatoriamente, com tamanhos diferentes em termos do número de parâmetros, tais como o número de produtos, zonas de clientes, CDs e fábricas considerando um sistema logístico de quatro níveis. As implementações computacionais mostram que o método de solução proposto obteve resultados satisfatórios quando comparados com a literatura. Para validar este método heurístico também foi usado em um caso realista, com base em dados de uma empresa de borracha que está reestruturando sua cadeia de suprimentos devido ao projeto de uma nova uma nova fábrica e produção de novos produtos. A abordagem heurística proposta revelou-se adequada para aplicação prática em um caso real de uma indústria multicommodity em um contexto determinístico. / In this thesis we propose a heuristic method for the Supply Chain Network Design (SCND) problem considering several aspects of practical relevance: suppliers and raw materials, location and operation facilities, distribution center (DC) assignments, and large numbers of customers and products. An efficient two-phase heuristic approach is proposed for obtaining feasible solutions to the problems, which is initially modeled as a large-scale Mixed Integer Linear Program (MILP). In the construction phase, a linear programming rounding strategy is applied to obtain initial values for the integer location variables in the model. Simultaneously, a Multi-start method was developed to generate diversified initial solutions from each new iteration in the rounding heuristic. In the second phase, two Local Search procedures were developed towards to improve the solution provided by the rounding method. We implemented two different Local Search approaches: removal-insertion and exchange. A Tabu Search technique was developed to guide the Local Search procedure to explore the different spaces of solutions. The formulations and algorithms were implemented in C++ code language using the optimization engine COIN-OR. The solution method was experimented in randomly generated instances, with different sizes in terms of the number of parameters, such as number of products, customer zones, DCs, and factories considering a four-echelon logistic system. The computational implementations show that the solution method proposed obtained satisfactory results when compared to the literature review. To validate this heuristic method was also used in a realistic case, based on data from a rubber company that is restructuring its supply chain due to the overture of a new factory, producing new products. The proposed heuristic approach proved appropriate to practical application in a realistic case of a multi commodity industry in a deterministic context.
|
32 |
Contributions à l'arithmétique flottante : codages et arrondi correct de fonctions algébriques / Contributions to floating-point arithmetic : Coding and correct rounding of algebraic functionsPanhaleux, Adrien 27 June 2012 (has links)
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le choix du système numérique et des algorithmes arithmétiques est important. Nous présentons une nouvelle représentation des nombres, les "RN-codes", telle que tronquer un RN-code à une précision donnée est équivalent à l'arrondir au plus près. Nous donnons des algorithmes arithmétiques pour manipuler ces RN-codes et introduisons le concept de "RN-code en virgule flottante." Lors de l'implantation d'une fonction f en arithmétique flottante, si l'on veut toujours donner le nombre flottant le plus proche de f(x), il faut déterminer si f(x) est au-dessus ou en-dessous du plus proche "midpoint", un "midpoint" étant le milieu de deux nombres flottants consécutifs. Pour ce faire, le calcul est d'abord fait avec une certaine précision, et si cela ne suffit pas, le calcul est recommencé avec une précision de plus en plus grande. Ce processus ne s'arrête pas si f(x) est un midpoint. Étant donné une fonction algébrique f, soit nous montrons qu'il n'y a pas de nombres flottants x tel que f(x) est un midpoint, soit nous les caractérisons ou les énumérons. Depuis le PowerPC d'IBM, la division en binaire a été fréquemment implantée à l'aide de variantes de l'itération de Newton-Raphson dues à Peter Markstein. Cette itération est très rapide, mais il faut y apporter beaucoup de soin si l'on veut obtenir le nombre flottant le plus proche du quotient exact. Nous étudions comment fusionner efficacement les itérations de Markstein avec les itérations de Goldschmidt, plus rapides mais moins précises. Nous examinons également si ces itérations peuvent être utilisées pour l'arithmétique flottante décimale. Nous fournissons des bornes d'erreurs sûres et précises pour ces algorithmes. / Efficient and reliable computer arithmetic is a key requirement to perform fast and reliable numerical computations. The choice of the number system and the choice of the arithmetic algorithms are important. We present a new representation of numbers, the "RN-codings", such that truncating a RN-coded number to some position is equivalent to rounding it to the nearest. We give some arithmetic algorithms for manipulating RN-codings and introduce the concept of "floating-point RN-codings". When implementing a function f in floating-point arithmetic, if we wish to always return the floating-point number nearest f(x), one must be able to determine if f(x) is above or below the closest "midpoint", where a midpoint is the middle of two consecutive floating-point numbers. This determination is first done with some given precision, and if it does not suffice, we start again with higher precision, and so on. This process may not terminate if f(x) can be a midpoint. Given an algebraic function f, we try either to show that there are no floating-point numbers x such that f(x) is a midpoint, or we try to enumerate or characterize them. Since the IBM PowerPC, binary division has frequently been implemented using variants of the Newton-Raphson iteration due to Peter Markstein. This iteration is very fast, but much care is needed if we aim at always returning the floating-point number nearest the exact quotient. We investigate a way of efficiently merging Markstein iterations with faster yet less accurate iterations called Goldschmidt iterations. We also investigate whether those iterations can be used for decimal floating-point arithmetic. We provide sure and tight error bounds for these algorithms.
|
33 |
Cizí měna v účetnictví podnikatelů v ČR a jednotná měna Eurozóny na příkladu SR / Foreign currency in accounting czech entrepreneur and single currecncy illustrated by an example Slovak RepublicBerková, Eva January 2011 (has links)
The primary concentration of the diploma thesis is conversion from domestic currency to single currency (EURO) from an accounting point of view. On the one side the thesis deal with foreign currency and it`s effect on accounting of Czech entrepreneurs and on the economics profit and loss. On the other side thesis show the solution for the entrepreneurs, which mainly deal in euro. Conversion is described on the example of the Slovak Republic. The thesis gives an overview of conversion`s process and interpretive examples
|
34 |
Metody krylovovských podprostorů - Analýza a aplikace / Krylov Subspace Methods - Analysis and ApplicationGergelits, Tomáš January 2020 (has links)
Title: Krylov Subspace Methods - Analysis and Application Author: Tomáš Gergelits Department: Department of Numerical Mathematics Supervisor: prof. Ing. Zdeněk Strakoš, DrSc., Department of Numerical Mathematics Abstract: Convergence behavior of Krylov subspace methods is often studied for linear algebraic systems with symmetric positive definite matrices in terms of the condition number of the system matrix. As recalled in the first part of this thesis, their actual convergence behavior (that can be in practice also substantially affected by rounding errors) is however determined by the whole spectrum of the system matrix, and by the projections of the initial residual to the associated invariant subspaces. The core part of this thesis investigates the spectra of infinite dimensional operators −∇ · (k(x)∇) and −∇ · (K(x)∇), where k(x) is a scalar coefficient function and K(x) is a symmetric tensor function, preconditioned by the Laplace operator. Subsequently, the focus is on the eigenvalues of the matrices that arise from the discretization using conforming finite elements. Assuming continuity of K(x), it is proved that the spectrum of the preconditi- oned infinite dimensional operator is equal to the convex hull of the ranges of the diagonal function entries of Λ(x) from the spectral decomposition K(x) =...
|
35 |
Hematology/Oncology Unit Champions Promote Care Plans for CLABSI PreventionMaxfield, Melissa D. 26 April 2021 (has links)
No description available.
|
36 |
Higher Radix Floating-Point Representations for FPGA-Based ArithmeticCatanzaro, Bryan Christopher 22 April 2005 (has links) (PDF)
Field Programmable Gate Arrays (FPGAs) are increasingly being used for high-throughput floating-point computation. It is forecasted that by 2009, FPGAs will provide an order of magnitude greater sustained floating-point throughput than conventional processors. FPGA implementations of floating-point operators have historically been designed to use binary floating-point representations, as do general purpose processors. Binary representations were chosen as the standard over three decades ago because they provide maximal numerical accuracy per bit of floating-point data. However, the unique nature of FPGA-based computation makes numerical accuracy per unit of FPGA resources a more important measure of the usefulness of a given floating-point representation. From this viewpoint, higher radix floating-point representations are well suited to FPGA-based computations, especially high precision calculations which require the support of denormalized numbers. This work shows that higher radix representations lead to more efficient use of FPGA resources. For example, a hexadecimal floating-point adder provides a 30% lower Area-Time product than its binary counterpart, and a hexadecimal floating-point multiplier has a 13% lower Area-Time product than its binary counterpart. This savings occurs while still delivering equal worst-case and better average-case numerical accuracy. This work presents a family of higher radix floating-point representations that are designed specifically to interoperate with standard IEEE floating-point, allowing the creation of floating-point datapaths which operate on standard binary floating-point data, yet use higher radix representations internally. Such datapaths provide higher performance by any measure: they are more accurate numerically, consume less FPGA resources and have shorter latencies. When taking into consideration the unique nature of FPGA-based computing systems, this work shows that binary floating-point representations are not optimal for most FPGA-based arithmetic computations. Higher radix representations can therefore be a useful tool for building efficient custom floating-point datapaths on FPGAs.
|
37 |
Two-Stage Stochastic Mixed Integer Nonlinear Programming: Theory, Algorithms, and ApplicationsZhang, Yingqiu 30 September 2021 (has links)
With the rapidly growing need for long-term decision making in the presence of stochastic future events, it is important to devise novel mathematical optimization tools and develop computationally efficient solution approaches for solving them. Two-stage stochastic programming is one of the powerful modeling tools that allows probabilistic data parameters in mixed integer programming, a well-known tool for optimization modeling with deterministic input data. However, akin to the mixed integer programs, these stochastic models are theoretically intractable and computationally challenging to solve because of the presence of integer variables. This dissertation focuses on theory, algorithms and applications of two-stage stochastic mixed integer (non)linear programs and it has three-pronged plan. In the first direction, we study two-stage stochastic p-order conic mixed integer programs (TSS-CMIPs) with p-order conic terms in the second-stage objectives. We develop so called scenario-based (non)linear cuts which are added to the deterministic equivalent of TSS-CMIPs (a large-scale deterministic conic mixed integer program). We provide conditions under which these cuts are sufficient to relax the integrality restrictions on the second-stage integer variables without impacting the integrality of the optimal solution of the TSS-CMIP. We also introduce a multi-module capacitated stochastic facility location problem and TSS-CMIPs with structured CMIPs in the second stage to demonstrate the significance of the foregoing results for solving these problems. In the second direction, we propose risk-neutral and risk-averse two-stage stochastic mixed integer linear programs for load shed recovery with uncertain renewable generation and demand. The models are implemented using a scenario-based approach where the objective is to maximize load shed recovery in the bulk transmission network by switching transmission lines and performing other corrective actions (e.g. generator re-dispatch) after the topology is modified. Experiments highlight how the proposed approach can serve as an offline contingency analysis tool, and how this method aids self-healing by recovering more load shedding. In the third direction, we develop a dual decomposition approach for solving two-stage stochastic quadratically constrained quadratic mixed integer programs. We also create a new module for an open-source package DSP (Decomposition for Structured Programming) to solve this problem. We evaluate the effectiveness of this module and our approach by solving a stochastic quadratic facility location problem. / Doctor of Philosophy / With the rapidly growing need for long-term decision making in the presence of stochastic future events, it is important to devise novel mathematical optimization tools and develop computationally efficient solution approaches for solving them. Two-stage stochastic programming is one of the powerful modeling tools that allows two-stages of decision making where the first-stage strategic decisions (such as deciding the locations of facilities or topology of a power transmission network) are taken before the realization of uncertainty, and the second-stage operational decisions (such as transportation decisions between customers and facilities or power flow in the transmission network) are taken in response to the first-stage decision and a realization of the uncertain (demand) data. This modeling tool is gaining wide acceptance because of its applications in healthcare, power systems, wildfire planning, logistics, and chemical industries, among others. Though intriguing, two-stage stochastic programs are computationally challenging. Therefore, it is crucial to develop theoretical results and computationally efficient algorithms, so that these models for real-world applied problems can be solved in a realistic time frame. In this dissertation, we consider two-stage stochastic mixed integer (non)linear programs, provide theoretical and algorithmic results for them, and introduce their applications in logistics and power systems.
First, we consider a two-stage stochastic mixed integer program with p-order conic terms in the objective that has applications in facility location problem, power system, portfolio optimization, and many more. We provide a so-called second-stage convexification technique which greatly reduces the computational time to solve a facility location problem, in comparison to solving it directly with a state-of-the-art solver, CPLEX, with its default settings. Second, we introduce risk-averse and risk-neutral two-stage stochastic models to deal with uncertainties in power systems, as well as the risk preference of decision makers. We leverage the inherent flexibility of the bulk transmission network through the systematic switching of transmission lines in/out of service while accounting for uncertainty in generation and demand during an emergency. We provide abundant computational experiments to quantify our proposed models, and justify how the proposed approach can serve as an offline contingency analysis tool. Third, we develop a new solution approach for two-stage stochastic mixed integer programs with quadratic terms in the objective function and constraints and implement it as a new module for an open-source package DSP We perform computational experiments on a stochastic quadratic facility location problem to evaluate the performance of this module.
|
38 |
Contribution to error analysis of algorithms in floating-point arithmetic / Contribution à l'analyse d'algorithmes en arithmétique à virgule flottantePlet, Antoine 07 July 2017 (has links)
L’arithmétique virgule flottante est une approximation de l’arithmétique réelle dans laquelle chaque opération peut introduire une erreur. La norme IEEE 754 requiert que les opérations élémentaires soient aussi précises que possible, mais au cours d’un calcul, les erreurs d’arrondi s’accumulent et peuvent conduire à des résultats totalement faussés. Cela arrive avec une expression aussi simple que ab + cd, pour laquelle l’algorithme naïf retourne parfois un résultat aberrant, avec une erreur relative largement supérieure à 1. Il est donc important d’analyser les algorithmes utilisés pour contrôler l’erreur commise. Je m’intéresse à l’analyse de briques élémentaires du calcul en cherchant des bornes fines sur l’erreur relative. Pour des algorithmes suffisamment précis, en arithmétique de base β et de précision p, on arrive en général à prouver une borne sur l'erreur de la forme α·u + o(u²) où α > 0 et u = 1/2·β1-p est l'unité d'arrondi. Comme indication de la finesse d'une telle borne, on peut fournir des exemples numériques pour les précisions standards qui approchent cette borne, ou bien un exemple paramétré par la précision qui génère une erreur de la forme α·u + o(u²), prouvant ainsi l'optimalité asymptotique de la borne. J’ai travaillé sur la formalisation d’une arithmétique à virgule flottante symbolique, sur des nombres paramétrés par la précision, et à son implantation dans le logiciel de calcul formel Maple. J’ai aussi obtenu une borne d'erreur très fine pour un algorithme d’inversion complexe en arithmétique flottante. Ce résultat suggère le calcul d'une division décrit par la formule x/y = (1/y)·x, par opposition à x/y = (x·y)/|y|². Quel que soit l'algorithme utilisé pour effectuer la multiplication, nous avons une borne d'erreur plus petite pour les algorithmes décrits par la première formule. Ces travaux sont réalisés avec mes directeurs de thèse, en collaboration avec Claude-Pierre Jeannerod (CR Inria dans AriC, au LIP). / Floating-point arithmetic is an approximation of real arithmetic in which each operation may introduce a rounding error. The IEEE 754 standard requires elementary operations to be as accurate as possible. However, through a computation, rounding errors may accumulate and lead to totally wrong results. It happens for example with an expression as simple as ab + cd for which the naive algorithm sometimes returns a result with a relative error larger than 1. Thus, it is important to analyze algorithms in floating-point arithmetic to understand as thoroughly as possible the generated error. In this thesis, we are interested in the analysis of small building blocks of numerical computing, for which we look for sharp error bounds on the relative error. For this kind of building blocks, in base and precision p, we often successfully prove error bounds of the form α·u + o(u²) where α > 0 and u = 1/2·β1-p is the unit roundoff. To characterize the sharpness of such a bound, one can provide numerical examples for the standard precisions that are close to the bound, or examples that are parametrized by the precision and generate an error of the same form α·u + o(u²), thus proving the asymptotic optimality of the bound. However, the paper and pencil checking of such parametrized examples is a tedious and error-prone task. We worked on the formalization of a symbolicfloating-point arithmetic, over numbers that are parametrized by the precision, and implemented it as a library in the Maple computer algebra system. We also worked on the error analysis of the basic operations for complex numbers in floating-point arithmetic. We proved a very sharp error bound for an algorithm for the inversion of a complex number in floating-point arithmetic. This result suggests that the computation of a complex division according to x/y = (1/y)·x may be preferred, instead of the more classical formula x/y = (x·y)/|y|². Indeed, for any complex multiplication algorithm, the error bound is smaller with the algorithms described by the “inverse and multiply” approach.This is a joint work with my PhD advisors, with the collaboration of Claude-Pierre Jeannerod (CR Inria in AriC, at LIP).
|
39 |
Contributions à la vérification formelle d'algorithmes arithmétiques / Contributions to the Formal Verification of Arithmetic AlgorithmsMartin-Dorel, Erik 26 September 2012 (has links)
L'implantation en Virgule Flottante (VF) d'une fonction à valeurs réelles est réalisée avec arrondi correct si le résultat calculé est toujours égal à l'arrondi de la valeur exacte, ce qui présente de nombreux avantages. Mais pour implanter une fonction avec arrondi correct de manière fiable et efficace, il faut résoudre le «dilemme du fabricant de tables» (TMD en anglais). Deux algorithmes sophistiqués (L et SLZ) ont été conçus pour résoudre ce problème, via des calculs longs et complexes effectués par des implantations largement optimisées. D'où la motivation d'apporter des garanties fortes sur le résultat de ces pré-calculs coûteux. Dans ce but, nous utilisons l'assistant de preuves Coq. Tout d'abord nous développons une bibliothèque d'«approximation polynomiale rigoureuse», permettant de calculer un polynôme d'approximation et un intervalle bornant l'erreur d'approximation à l'intérieur de Coq. Cette formalisation est un élément clé pour valider la première étape de SLZ, ainsi que l'implantation d'une fonction mathématique en général (avec ou sans arrondi correct). Puis nous avons implanté en Coq, formellement prouvé et rendu effectif 3 vérifieurs de certificats, dont la preuve de correction dérive du lemme de Hensel que nous avons formalisé dans les cas univarié et bivarié. En particulier, notre «vérifieur ISValP» est un composant clé pour la certification formelle des résultats générés par SLZ. Ensuite, nous nous sommes intéressés à la preuve mathématique d'algorithmes VF en «précision augmentée» pour la racine carré et la norme euclidienne en 2D. Nous donnons des bornes inférieures fines sur la plus petite distance non nulle entre sqrt(x²+y²) et un midpoint, permettant de résoudre le TMD pour cette fonction bivariée. Enfin, lorsque différentes précisions VF sont disponibles, peut survenir le phénomène de «double-arrondi», qui peut changer le comportement de petits algorithmes usuels en arithmétique. Nous avons prouvé en Coq un ensemble de théorèmes décrivant le comportement de Fast2Sum avec double-arrondis. / The Floating-Point (FP) implementation of a real-valued function is performed with correct rounding if the output is always equal to the rounding of the exact value, which has many advantages. But for implementing a function with correct rounding in a reliable and efficient manner, one has to solve the ``Table Maker's Dilemma'' (TMD). Two sophisticated algorithms (L and SLZ) have been designed to solve this problem, relying on some long and complex calculations that are performed by some heavily-optimized implementations. Hence the motivation to provide strong guarantees on these costly pre-computations. To this end, we use the Coq proof assistant. First, we develop a library of ``Rigorous Polynomial Approximation'', allowing one to compute an approximation polynomial and an interval that bounds the approximation error in Coq. This formalization is a key building block for verifying the first step of SLZ, as well as the implementation of a mathematical function in general (with or without correct rounding). Then we have implemented, formally verified and made effective 3 interrelated certificates checkers in Coq, whose correctness proof derives from Hensel's lemma that we have formalized for both univariate and bivariate cases. In particular, our ``ISValP verifier'' is a key component for formally verifying the results generated by SLZ. Then, we have focused on the mathematical proof of ``augmented-precision'' FP algorithms for the square root and the Euclidean 2D norm. We give some tight lower bounds on the minimum non-zero distance between sqrt(x²+y²) and a midpoint, allowing one to solve the TMD for this bivariate function. Finally, the ``double-rounding'' phenomenon can typically occur when several FP precision are available, and may change the behavior of some usual small FP algorithms. We have formally verified in Coq a set of results describing the behavior of the Fast2Sum algorithm with double-roundings.
|
40 |
Hur påverkar avrundningar tillförlitligheten hos parameterskattningar i en linjär blandad modell?Stoorhöök, Li, Artursson, Sara January 2016 (has links)
Tidigare studier visar på att blodtrycket hos gravida sjunker under andra trimestern och sedanökar i ett senare skede av graviditeten. Högt blodtryck hos gravida kan medföra hälsorisker, vilket gör mätningar av blodtryck relevanta. Dock uppstår det osäkerhet då olika personer inom vården hanterar blodtrycksmätningarna på olika sätt. Delar av vårdpersonalen avrundarmätvärden och andra gör det inte, vilket kan leda till svårigheter att tolkablodtrycksutvecklingen. I uppsatsen behandlas ett dataset innehållandes blodtrycksvärden hos gravida genom att skatta nio olika linjära regressionsmodeller med blandade effekter. Därefter genomförs en simuleringsstudie med syfte att undersöka hur mätproblem orsakat av avrundningar påverkar parameterskattningar och modellval i en linjär blandad modell. Slutsatsen är att blodtrycksavrundningarna inte påverkar typ 1-felet men påverkar styrkan. Dock innebär inte detta något problem vid fortsatt analys av blodtrycksvärdena i det verkliga datasetet.
|
Page generated in 0.0697 seconds