1 |
Einfluss periglazialer Deckschichten auf die oberflächennahen Fließwege am Hang - eine Prozessstudie im Osterzgebirge, Sachsen / Influence of periglacial cover beds on subsurface water flow paths on hillslopes - a process study from the Eastern Ore Mountains, SaxonyHeller, Katja 06 November 2012 (has links) (PDF)
Ziel der Arbeit ist es, ein genaueres Prozessverständnis zur Abflussbildung an Hängen auf der Basis der räumlichen Verbreitung periglazialer Deckschichten zu erhalten. Das Untersuchungsgebiet ist ein 6 ha großes, forstlich bewirtschaftetes Quelleinzugsgebiet im Osterzgebirge. Das anstehende Gestein ist Gneis. Der oberflächennahe Untergrund ist aus zwei- und dreigliedrigen Deckschichten zusammengesetzt. Auf der Punkt-, Hang- und Kleineinzugsgebietsskala werden hydrometrische, hydrochemische und geoelektrische Methoden sowie Färbeversuche eingesetzt, um auf die dominierenden Abflussbildungsprozesse schließen zu können. Aus der Synthese der Teilergebnisse werden drei typische Prozessabläufe in Abhängigkeit von der Gebietsvorfeuchte abgeleitet. Diese verdeutlichen, dass bei geringer Vorfeuchte Sättigungsoberflächenabfluss im Quellsumpf vorherrscht, bei mittlerer bis hoher Vorfeuchte dagegen Zwischenabfluss der dominierende Abflussprozess ist. Die Abflusswirksamkeit der Niederschläge steigt zudem mit zunehmender Vorfeuchte nichtlinear an. Es wird herausgestellt, dass die hydraulisch anisotropen Eigenschaften der Basislage entscheidend die oberflächennahen Fließwege des Wassers beeinflussen. Sie besitzt durch ihre hohe Lagerungsdichte einerseits vertikal wasserstauende Eigenschaften. Andererseits kann Wasser, begünstigt durch das dominant sandige Substrat und das hangparallel eingeregelte Bodenskelett innerhalb der Schicht bevorzugt lateral geleitet werden. Die gewonnenen Erkenntnisse verdeutlichen die Bedeutung der Eigenschaften der periglazialen Deckschichten für die Abflussbildung an Mittelgebirgshängen. / The aim of this study is to contribute to the understanding of runoff processes on slopes based on the spatial distribution of periglacial cover beds. The study area is a 6 ha large forested spring catchment in the Eastern Ore Mountains, Saxony. Bedrock is gneiss overlain by periglacial cover beds comprising two or three layers. On plot, hillslope and small-catchment scales hydrometrical, hydrochemical and geoelectrical methods as well as tracer experiments are used to determine the constitutive runoff processes. From the synthesis of partial results, three pre-moisture controlled process cycles are derived. With low pre-moisture, saturation overland flow dominates in the spring bog. In contrast, with medium or high pre-moisture interflow occurs. Besides, with rising pre-moisture runoff coefficients increase in a non-linear manner. It is emphasised that the hydraulic anisotropic structure of the Basal Layer is the major control factor for subsurface water-flow paths. On the one hand, this layer acts as an aquitard for seeping water because of its high bulk density. On the other hand, water within the layer is able to flow laterally because of the sandy texture and the coarse clasts oriented parallel to the slope. These findings highlight the importance of relic periglacial cover beds for runoff generation in subdued mountains.
|
2 |
Computational Hydrosystem Analysis: Applications to the Meijiang and Nankou Catchments in ChinaSun, Feng 11 July 2011 (has links) (PDF)
Hydrosystems are important elements of the hydraulic cycle. With population growth and climatic change impacting water resources, the existing water transport systems need to be reproduced in order to optimize the usage of the precious water resources. The individual flow process i.e. unsaturated soil flow and groundwater flow in porous and fractured media can be expressed by partial differential equations mathematically. The numerical models are generally used to give solutions of these equations with specific conditions.
In this work, the numerical solutions are carried out using the scientific software OpenGeoSys (OGS) based on the finite element method. The complex geometrical structure model domain can be imported into the numerical model with an implemented graphical interface. A GIS based relational database model GeoHydroDataBase (GHDB) designed to create a specialized set of geo- and hydro-objects is integrated with the numerical model.
The multi-field and detailed computational hydrosystem analysis methodology is applied to Meijiang catchment and Nankou site respectively. As an application, the case study for the Meijiang area with the focus on surface/subsurface water interaction and the recharge response from surface infiltration to groundwater with different time series discretization. In the Nankou case study, a 3-D regional groundwater flow model is developed. The hydrogeological system is reproduced according to sparsely distributed boreholes data. The model calibration and sensitivity analysis are accomplished with inverse methods by applying a model independent parameter estimation system (PEST). The results of the calibrated model show reasonable agreements with observed water levels. The transient groundwater flow simulations reflect the observed drawdown of the last 9 years and show the formation of a depression cone in an intensively pumped area. The well calibrated 3-D groundwater model provides hydrogeological parameters and lateral fluxes from the adjacent mountain area for the following transport modeling and remediation scenarios analysis. In this study the method of capture zone type curves is used to estimate the pumping rate and the number of pumping wells needed for the contaminated aquifer cleanup. The analytical solutions of drawdown at the pumping wells (for both single pumping well and double wells) are compared with those calculated from the numerical model.
|
3 |
Impact of Climate Change on the Storm Water System in Al Hillah City-IraqAl Janabi, Firas 21 January 2015 (has links) (PDF)
The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance.
According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly.
The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies.
Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study.
LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah.
The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time.
Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections.
All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration.
The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected.
In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident.
The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh). / Die Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten.
Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen.
Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden.
Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen.
Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet.
Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird.
Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen.
Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet.
Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden.
Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen.
Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).
|
4 |
Integrated watershed modeling in Central Brazil / Integrierte Einzugsgebietsmodellierung in Zentralbrasilien: Beiträge zur robusten prozessbasierten ModellsimulationStrauch, Michael 03 July 2014 (has links) (PDF)
Over the last decades, fast growing population along with urban and agricultural sprawl has drastically increased the pressure on water resources of the Federal District (DF), Brazil. Various socio-environmental problems, such as soil erosion, non-point source pollution, reservoir silting, and conflicts among water users evoked the need for more efficient and sustainable ways to use land and water. Due to the complexity of processes relevant at the scale of river basins, a prior analysis of impacts of certain land use and/or land management changes is only feasible by means of modeling. The Soil and Water Assessment Tool (SWAT) has been proven to be useful in this context, across the globe and for different environmental conditions. In this thesis, the SWAT model is utilized to evaluate the impact of Best Management Practices (BMPs) on catchment hydrology and sediment transport.
However, model applications in tropical regions, such as the DF, are hampered by severe challenges, (i) the lack of input and control data in an adequate temporal and spatial resolution and (ii) model structural failures in representing processes under tropical conditions. The present (cumulative) thesis addresses these challenges in model simulations for two contrasting watersheds, which both are important sources of the DF’s drinking water supply, i.e. (i) the agriculture-dominated Pipiripau river basin where conflicting demands put immense pressure on the available water resources and (ii) the Santa Maria / Torto river basin, which is to large parts protected as national park and, thus, covered by native vegetation of the Cerrado biome.
Perhaps one of the most challenging issues facing watershed modelers in tropical regions is the fact that rain gauge networks can usually not reflect the high spatio-temporal variability of mostly convective precipitation patterns. Therefore, an ensemble of different reasonable input precipitation data-sets was used to examine the uncertainty in parameterization and model output. Acceptable streamflow and sediment load predictions could be achieved for each input data-set. However, the best-fit parameter values varied widely across the ensemble. Due to its enhanced consideration of parameter uncertainty, this ensemble approach provides more robust predictions and hence is reasonable to be used also for scenario simulations. BMP scenarios for the Pipiripau River Basin revealed that erosion control constructions, such as terraces and small retention basins along roads (Barraginhas) are promising measures to reduce sediment loads (up to 40%) while maintaining streamflow. Tests for a multi-diverse crop rotation system, in contrast, showed a high vulnerability of the hydrologic system against any increase in irrigation. Considering the BMP implementation costs, it was possible to estimate cost-abatement curves, which can provide useful information for watershed managers, especially when BMPs are supported by Payments for Environmental Services as it is the case in the study area due to the program Produtor de Água.
While for agricultural areas the model has proven to generate plausible results, the plant growth module of SWAT was found to be not suitable for simulating perennial tropical vegetation, such as Cerrado (savanna) or forest, which can also play a crucial role in river basin management. For temperate regions SWAT uses dormancy to terminate growing seasons of trees and perennials. However, there is no mechanism considered to reflect seasonality in the tropics, i.e. the phenological change between wet and dry season. Therefore, a soil moisture based approach was implemented into the plant growth module to trigger new growing cycles in the transition period from dry to wet season. The adapted model was successfully tested against LAI and ET time series derived from remote sensing products (MODIS). Since the proposed changes are process-based but also allow flexible model settings, the modified plant growth module can be seen as a fundamental improvement useful for future model application in the tropics.
The present thesis shows insights into the workflow of a watershed model application in the semi-humid tropics – from input data processing and model setup over source code adaptation, model calibration and uncertainty analysis to its use for running scenarios. It depicts region-specific challenges but also provides practical solutions. Hence, this work might be seen as one further step toward robust and process-based model predictions to assist land and water resources management. / Starkes Bevölkerungswachstum, ungeplante Suburbanisierung und Landnutzungsänderungen (z.B. Intensivierung in der Landwirtschaft) verstärkten innerhalb der letzten Jahrzehnte zunehmend den Druck auf die Wasserressourcen des Bundesdistrikts Brasilien (zentralbrasilianisches Hochland), in dessen Mitte die junge Hauptstadt Brasília liegt. Damit verbundene negative Umweltauswirkungen, wie Bodenerosion, Stoff- und Sedimenteinträge in Fließgewässer und Talsperren sowie Konflikte zwischen den Wassernutzern erfordern daher dringend effektive und nachhaltige Lösungen im Land- und Wasserressourcen-management.
Der Einfluss von möglichen zukünftigen Landnutzungs- und Bewirtschaftungsänderungen auf Wasserverfügbarkeit und -qualität hängt vom jeweiligen, oftmals sehr komplexen, landschaftsökologischen Prozessgefüge ab und kann nur mithilfe von prozessbasierten Simulationsmodellen quantitativ auf der Ebene von Einzugsgebieten abgeschätzt werden. Das “Soil and Water Assessment Tool” (SWAT) ist ein solches Modell. Es findet weltweite Anwendung für verschiedene Umweltbedingungen in Einzugsgebieten der Meso- bis Makroskala, um Landnutzungseffekte auf den Wasserhaushalt und den Transport von Nährstoffen, Pestiziden und Sedimenten zu prognostizieren. Seine Anwendung in tropischen Regionen, wie etwa in Zentralbrasilien, ist jedoch mit erheblichen Herausforderungen verbunden. Das betrifft sowohl die Verfügbarkeit von Eingangs- und Referenzdaten in ausreichender raum-zeitlicher Auflösung, als auch modellstrukturelle Unzulänglichkeiten bei der Prozessabbildung. Die vorliegende kumulative Dissertation zeigt dies anhand von Modellanwendungen für zwei unterschiedliche wasserwirtschaftlich relevante Einzugsgebiete (EZG): Das landwirtschaftlich intensiv genutzte EZG des Rio Pipiripau mit aktuell besonders konfliktträchtiger Wassernutzung, und das Santa Maria/Torto-EZG, welches - geschützt als Nationalpark - durch größtenteils natürliche Vegetationsformationen der brasilianischen Savanne (Cerrado) gekennzeichnet ist.
Eine der größten Herausforderungen für die Einzugsgebietsmodellierung in tropischen Regionen liegt in der Abschätzung des Gebietsniederschlages, da vorhandene Messstationsdichten oft nicht ausreichen, um die hohe räumliche und zeitliche Variabilität der meist konvektiven Niederschläge zu erfassen. Mithilfe eines Ensembles verschiedener, plausibel generierter Niederschlagsreihen ist der Einfluss von Niederschlagsdaten-Unsicherheit auf die Modellparametrisierung und -vorhersage explizit berücksichtigt und untersucht worden. Zufriedenstellende Abfluss- und Sedimentfrachtsimulationen waren mit jeder der als Modelinput verwendeten Niederschlagsreihen möglich, jedoch nur bei entsprechender, z.T. stark voneinander abweichender Einstellung der Kalibrierungsparameter. Da diese umfassendere Betrachtung von Parameterunsicherheit zu robusteren Modellvorhersagen führt, wurde der Ensemble-Ansatz auch in der Simulation von Bewirtschaftungsszenarien, dem eigentlichen Modellzweck, verwendet. Die Szenariosimulationen zeigten, dass Maßnahmen zur Erosionsvermeidung (Terrassierung) und zum Sedimentrückhalt (kleine Sedimentrückhaltebecken entlang von Straßen - Barraginhas) die Sedimentfracht des Rio Pipiripau durchschnittlich um bis zu 40% reduzieren können, ohne dabei die Wasserverfügbarkeit zu beeinträchtigen.
Modellszenarien mit einer vielgliedrigen Fruchtfolge auf großer Fläche verdeutlichten dagegen die hohe Vulnerabilität des Niedrigwasserabflusses in der Trockenzeit gegenüber jedweder Erhöhung der Bewässerungsmenge. Auf Grundlage von Kostenschätzungen für einzelne Maßnahmen konnten Kostenkurven zur Verringerung der Sedimentfracht und damit nützliche Informationen für das Wasserressourcen-Management abgeleitet werden, insbesondere weil eine Auswahl solcher Agrar-Umweltmaßnahmen im Pipiripau-EZG durch das Programm Produtor de Água finanziell gefördert werden sollen. Während das Modell in landwirtschaftlich genutzten Gebieten plausible Ergebnisse produzierte, wurden erhebliche Schwachstellen in der Simulation ausdauernder Vegetation (z.B. Cerrado) identifiziert. Zur Unterbrechung jährlicher Vegetationszyklen verwendet SWAT eine tageslängenabhängige Dormanzperiode. Diese ist zwar zweckmäßig zur Abbildung der Vegetationsdynamik in den gemäßigten Breiten, steuert aber nicht tropische Vegetationszyklen. Um den Wechsel zwischen Trocken- und Regenzeit in der pflanzenphänologischen Simulation in SWAT abzubilden, wurde daher im Rahmen dieser Arbeit das Pflanzenwachstumsmodul modifiziert, und zwar unter anderem durch Einbeziehung der simulierten Bodenfeuchte zur Unterbrechung der Wachstumszyklen. Das angepasste Modul wurde erfolgreich anhand von Fernerkundungsdaten (MODIS) zum zeitlichen Verlauf von Blattflächenindex und Evapotranspiration getestet. Es ist prozessbasiert und erlaubt flexible Einstellungen, so dass es als grundlegende Modellverbesserung auch für andere SWAT-Anwender von großem Nutzen sein kann.
Die vorliegende Dissertation bringt neue Einsichten in verschiedene wichtige Aspekte der integrierten Modellierung tropischer Einzugsgebiete, von der Eingangsdatenaufbereitung über Quellcode-Anpassung, Modellkalibrierung und Unsicherheitsanalyse bis hin zu Szenariosimulationen. Sie veranschaulicht regionsspezifische Herausforderungen, liefert gleichzeitig aber auch praktikable Lösungen und damit einen wichtigen Beitrag für robustere prozessbasierte Modellanwendungen als Entscheidungsunterstützung im Bereich Land- und Wasserressourcenmanagement.
|
Page generated in 0.0316 seconds