1 |
Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnetsJoshi, Darshan Gajanan 02 March 2016 (has links) (PDF)
In the study of strongly interacting condensed-matter systems controlled microscopic theories hold a key position. Spin-wave theory, large-N expansion, and $epsilon$-expansion are some of the few successful cornerstones. In this doctoral thesis work, we have developed a novel large-$d$ expansion method, $d$ being the spatial dimension, to study model Hamiltonians hosting a quantum phase transition between a paramagnet and a magnetically ordered phase. A highlight of this technique is that it can consistently describe the entire phase diagram of the above mentioned models, including the quantum critical point. Note that most analytical techniques either efficiently describe only one of the phases or suffer from divergences near the critical point. The idea of large-$d$ formalism is that in this limit, non-local fluctuations become unimportant and that a suitable product state delivers exact expectation values for local observables, with corrections being suppressed in powers of $1/d$. It turns out that, due to momentum summation properties of the interaction structure factor, all diagrams are suppressed in powers of $1/d$ leading to an analytic expansion. We have demonstrated this method in two important systems namely, the coupled-dimer magnets and the transverse-field Ising model.
Coupled-dimer magnets are Heisenberg spin systems with two spins, coupled by intra-dimer antiferromagnetic interaction, per crystallographic unit cell (dimer). In turn, spins from neighboring dimers interact via some inter-dimer interaction. A quantum paramagnet is realized for a dominant intra-dimer interaction, while a magnetically ordered phase exists for a dominant (or of the same order as intra-dimer interaction) inter-dimer interaction. These two phases are connected by a quantum phase transition, which is in the Heisenberg O(3) universality class. Microscopic analytical theories to study such systems have been restricted to either only one of the phases or involve uncontrolled approximations. Using a non-linear bond-operator theory for spins with S=$1/2$, we have calculated the $1/d$ expansion of static and dynamic observables for coupled dimers on a hypercubic lattice at zero temperature. Analyticity of the $1/d$ expansion, even at the critical point, is ensured by correctly identifying suitable observables using the mean-field critical exponents. This method yields gapless excitation modes in the continuous symmetry broken phase, as required by Goldstone\'s theorem. In appropriate limits, our results match with perturbation expansion in small ratio of inter-dimer and intra-dimer coupling, performed using continuous unitary transformations, as well as the spin-wave theory for spin-$1/2$ in arbitrary dimensions. We also discuss the Brueckner approach, which relies on small quasiparticle density, and derive the same $1/d$ expansion for the dispersion relation in the disordered phase. Another success of our work is in describing the amplitude (Higgs) mode in coupled-dimer magnets. Our novel method establishes the popular bond-operator theory as a controlled approach.
In $d=2$, the results from our calculations are in qualitative agreement with the quantum Monte Carlo study of the square-lattice bilayer Heisenberg AF spin-$1/2$ model. In particular, our results are useful to identify the amplitude (Higgs) mode in the QMC data.
The ideas of large-$d$ are also successfully applied to the transverse-field Ising model on a hypercubic lattice. Similar to bond operators, we have introduced auxiliary Bosonsic operators to set up our method in this case.
We have also discussed briefly the bilayer Kitaev model, constructed by antiferromagnetically coupling two layers of the Kitaev model on a honeycomb lattice. In this case, we investigate the dimer quantum paramagnetic phase, realized in the strong inter-layer coupling limit. Using bond-operator theory, we calculate the mode dispersion in this phase, within the harmonic approximation. We also conjecture a zero-temperature phase diagram for this model.
|
2 |
Untersuchung der Phasengleichgewichte in Systemen mit assoziierenden Komponenten / Investigation of Phase Equilibria in Systems with Associating ComponentsKlauck, Mandy 02 December 2009 (has links) (PDF)
Die Phasengleichgewichte (Flüssigkeit-Dampf und Flüssigkeit-Flüssigkeit) der binären, ternären und quaternären Mischungen bestehend aus Wasser, Toluen, Anilin und Cyclohexylamin wurden experimentell bestimmt und modelliert bzw. vorausberechnet. Die Bestimmung der Flüssigkeit-Dampf-Gleichgewichte erfolgte mit Hilfe der dynamischen Methode, die dafür notwendige Mess- und Regeltechnik wurde erweitert und modernisiert. Die Flüssigkeit-Flüssigkeit-Gleichgewichte wurden durch Trübungstitration und Analyse der koexistierenden Phasen bestimmt.
Die Beschreibung der binären Systeme und die Vorausberechnung der Mehrkomponentensysteme erfolgte mit den Aktivitätskoeffizientenmodellen UNIQUAC und NRTL und der Zustandsgleichung, entwickelt von Elliott, Suresh und Donohue (ESD). Die ESD-Zustandsgleichung enthält neben einem Attraktions- und einem Repulsionsterm auch einen Term, der assoziative Wechselwirkungen explizit berücksichtigt.
Die Beschreibung der binären Systeme gelingt mit den getesteten Modellen sehr gut. Dabei werden mit den Aktivitätskoeffizientenmodellen bessere Ergebnisse erreicht als mit der ESD-Zustandsgleichung. Diese Bild kehrt sich bei der Vorausberechnung der Mehrkomponentensysteme um. Bei Verwendung der NRTL-Gleichung treten deutlich höhere Abweichungen auf als bei Berechnungen mit der ESD-Zustandsgleichung bzw. der UNIQUAC-Gleichung. Die Erwartung durch explizite Berücksichtigung der Assoziation mit der ESD-Zustandsgleichung einen deutlichen Vorteil in der Vorhersage von Phasengleichgewichten in Systemen mit assoziierenden Komponenten zu erhalten konnte in den untersuchten Mischungen nicht eindeutig bestätigt werden. / Phase equilibria (vapor-liquid and liquid-liquid) of binary, ternary and quaternary systems consisting of water, toluene, aniline and cyclohexylamine were determined experimentally and modeled resp. predicted. Vapor-liquid equilibria were determined by the dynamic method, the necessary measuring and control systems were extended and modernized. Liquid-liquid equilibria were investigated by turbidity titration and analyses of coexisting phases.
The calculation of the binary systems and the prediction of the multicomponent systems were performed with the activity coefficient models UNIQUAC and NRTL and the equation of state developed by Elliott, Suresh and Donohue (ESD). The ESD equation of state includes beside an attractive and a repulsive term a term for explicit consideration of associative interaction.
The description of the binary systems succeeded very well with the tested models. Better results were achieved with the activity coefficient models than with the ESD equation of state. These findings are inversed in the case of prediction of multicomponent phase equilibria. On application of the NRTL equation the deviations are notable greater than with the ESD equation of state or the UNIQUAC equation. The expectation to get a significant advantage in prediction of phase equilibria in systems with associating components with the ESD equation of state could not be answered definitely.
|
3 |
Experimentelle Untersuchungen zum Blasensieden bei unterkühlten StrömungenSchneider, Clemens 08 December 2015 (has links) (PDF)
Die vorliegende Dissertationsschrift beinhaltet die Ergebnisse der Untersuchung von loka-len und globalen Prozessen der Wärmeübertragung beim unterkühlten Strömungssieden. Sie ist an der Schnittstelle zwischen Reaktorsicherheitsforschung und der experimentellen Thermofluiddynamik für Phasenübergänge einzuordnen.
In technischen Anwendungen zur effizienten Übertragung großer Wärmemengen spielt der Prozess des Siedens eine wichtige Rolle. Dieser Vorgang bewirkt einen starken Anstieg des Wärmetransportes von der beizten Wand an das Fluid bei vergleichsweise geringem Anstieg der Wandtemperatur. Der maximal übertragbare Wärmestrom beim Sieden wird begrenzt durch die sogenannte kritische Wärmestromdichte, deren Überschreitung zum thermomechanischen Versagen der beheizten Komponente führen kann.
Aufgrund der Komplexität dieser Prozesse ist es trotz intensiver Arbeiten in den letzten Jahrzehnten noch nicht gelungen, diese Vorgänge detailliert zu modellieren. Eine Weiter-entwicklung der Modelle zur realistischen Beschreibung des unterkühlten Strömungssie-dens erfordert neuartige Untersuchungen, welche eine genaue Klassifizierung der partiellen Wärmeübergänge des Blasensiedens ermöglichen.
Die Analyse partieller Wärmetransportgrößen beim unterkühlten Strömungssieden sowie der Einfluss variierender thermohydraulischer Randbedingungen ist Schwerpunkt dieser Arbeit. In der entwickelten Versuchsanlage erfolgt die Erfassung der Siedevorgänge bei Strömungsgeschwindigkeiten von 0,1 – 2 m/s und Eintrittstemperaturen von 60 - 98 °C.
Mit Hilfe empfindlicher Temperaturmessungen in einem elektrisch beheizten Kapillarrohr innerhalb des Strömungskanals werden die globalen Vorgänge beim Übergang von Kon-vektion zum Sieden erfasst. Durch eine modellbasierte Bestimmung der Oberflächentem-peratur lassen sich Phänomene nachweisen, welche bisher weitestgehend unbeachtet ge-blieben sind. Die transparente Versuchsstrecke ermöglicht eine Erfassung der lokalen Sie-devorgänge mit optisch und zeitlich hochauflösenden Messverfahren. Durch die Entwick-lung neuer Algorithmen der digitalen Bildverarbeitung wurde eine umfangreiche, kenngrö-ßenorientierte Auswertung der in großem Umfang entstandenen Datenmengen realisiert.
Der Einsatz transparenter und elektrisch leitfähiger Beschichtungen ermöglicht die mikro-skopische Erfassung des Blasenwachstums in weiten thermohydraulischen Parameterberei-chen. Mit erweiterten Bildverarbeitungsalgorithmen erfolgt die detaillierte und dynamische Bewertung des Blasenwachstumsverhaltens. Die statistische Auswertung der Verläufe er-möglicht die Ableitung eines Blasenwachstumsmodells für unterkühltes Strömungssieden.
In einer weiteren Versuchsanordnung werden die lokalen Wärmetransportvorgänge bei der Ablösung quasistatisch gewachsener Blasen mit Hilfe der Infrarot-Thermographie be-stimmt. Dadurch können erstmalig die aus der lokalen Abkühlung der beheizten Oberfläche durch Blasenablösung resultierenden Wärmeströme unter Vernachlässigung der Bla-senbildung experimentell quantifiziert werden. Weiterhin können die bisher theoretisch beschriebenen Driftströmungen beim Aufstieg der Blase experimentell nachgewiesen wer-den. Die ermittelten Größen und Zusammenhänge tragen zur Weiterentwicklung und zum Abbau von Unsicherheiten bei der Modellierung von Wärmetransportvorgängen beim unterkühlten Strömungssieden bei.
|
4 |
Local quantum criticality in and out of equilibriumZamani, Farzaneh 06 December 2016 (has links) (PDF)
In this thesis I investigate several aspects of local quantum criticality, a concept of key importance in a number of physical contexts ranging from critical heavy fermion compounds to quantum dot systems.
Quantum critical points are associated with second order phase transitions at zero temperature. In contrast to their finite-temperature counterparts, the zero-point motion cannot be neglected near a quantum critical point. As a result, the incorporation of quantum dynamics leads to an effective dimension larger than the spatial dimension of the system for the order parameter fluctuations within the Ginzburg-Landau-Wilson treatment of criticality. This so-called quantum-to-classical mapping works well for the critical properties in insulating systems but apparently fails in systems containing gapless fermions. This has been experimentally most clearly been demonstrated within a particular class of intermetallic compounds called heavy fermions. A particular way in which the Ginzburg-Landau-Wilson paradigm fails is for critical Kondo destruction that seems to underlie the unconventional quantum criticality seen in the heavy fermions. I focus on studying the properties of critical Kondo destruction and the emergence of energy-over-temperature-scaling in systems without spatial degrees of freedom, i.e., so-called quantum impurity systems. In particular, I employ large-N techniques to address critical properties of this class of quantum phase transitions in and out of equilibrium. As quantum critical systems are characterized by a scale-invariant spectrum with many low-lying excitations, it may appear that any perturbation can lead to a response beyond the linear response regime. Understanding what governs the non-linear response regime near quantum criticality is an interesting area.
Here, I first present a path integral version of the Schrieffer-Wolff transformation which relates the functional integral form of the partition function of the Anderson model to that of its effective low-energy model. The equivalence between the low-energy sector of the Anderson model in the Kondo regime and the spin-isotropic Kondo model is usually established via a canonical transformation performed on the Hamiltonian, followed by a projection. The resulting functional integral assumes the form of a spin path integral and includes a geometric phase factor, i.e. a Berry phase. The approach stresses the underlying symmetries of the model and allows for a straightforward generalization of the transformation to more involved models. As an example of the efficiency of the approach I apply it to a single electron transistor attached to ferromagnetic leads and derive the effective low-energy model of such a magnetic transistor.
As Kondo screening is a local phenomenon, it and its criticality can be studied using the appropriate impurity model. A general impurity model to study critical Kondo destruction is the pseudogap Bose-Fermi Kondo model. Here, I concentrate on the multi-channel version of the model using the dynamical large-N study. This model allows to study the non-trivial interplay between two different mechanisms of critical Kondo destruction. The interplay of two processes that can each by itself lead to critical Kondo destruction. The zero-temperature residual entropy at various fixed points for the model is also discussed.
The two channel Anderson model exhibits several continuous quantum phase transitions between weak- and strong-coupling phases. The non-crossing approximation (NCA) is believed to give reliable results for the standard two-channel Anderson model of a magnetic impurity in a metal. I revisit the reliability of the NCA for the standard two channel Anderson model (constant conduction electron density of states) and investigate its reliability for the two-channel pseudogap Anderson model. This is done by comparing finite-temperature, finite-frequency solutions of the NCA equations and asymptotically exact zero-temperature NCA solutions with numerical renormalization-group calculations. The phase diagram of this model is well established. The focus here will be on the dynamical scaling properties obtained within the NCA.
Finally, I study the thermal and non-thermal steady state scaling functions and the steady-state dynamics of the pseudogap Kondo model. This model allows us to study the concept of effective temperatures near fully interacting as well as weak-coupling fixed points and compare the out-of-equilibrium scaling properties of critical Kondo destruction to those of the traditional spin-density wave (SDW) scenario. The differences I identify can be experimentally probed. This may be helpful in identifying the nature of the quantum critical points observed in certain heavy fermion compounds.
|
5 |
Quantenphasenübergänge in den Schwere-Fermionen-Systemen Yb(Rh_{1-x}M_x)_2Si_2 und CePd_{1-x}Rh_x / Quantum Phase Transitions in the Heavy-fermion Systems Yb(Rh_{1-x}M_x)_2Si_2 and CePd_{1-x}Rh_xWesterkamp, Tanja 05 June 2009 (has links) (PDF)
Die Betrachtung von Schwere-Fermionen-Systemen stellt ein wichtiges Themengebiet im Bereich der Festkörperphysik dar. Das Verhalten von Schwere-Fermionen-Systemen wird durch die starken Korrelationen der magnetischen Momente der ungepaarten Spins der f-Elektronen bestimmt. Experimentell zugängliche Messgrößen sind dadurch bei tiefen Temperaturen stark erhöht, so dass sich diese Systeme besonders gut zur Untersuchung von Grundzustandseigenschaften eignen. Zentrales Thema dieser Arbeit ist die Untersuchung zweier intermetallischer Seltenerd-Verbindungen in Bezug auf Quantenphasenübergänge. Diese treten am absoluten Nullpunkt der Temperatur als Funktion eines anderen Parameters wie Magnetfeld, Druck oder chemischer Substitution auf und sind bei endlicher Temperatur durch Abweichungen physikalischer Messgrößen von der durch L. D. Landau aufgestellten Theorie der Fermi-Flüssigkeiten nachzuweisen. Zu diesem Zweck wurden Tieftemperaturexperimente bis hinab zu 20mK und in Magnetfeldern bis zu 18T durchgeführt. Es wurden elektrischer Widerstand, magnetische Wechselfeldsuszeptibilität, Magnetostriktion und thermische Ausdehnung gemessen. / The investigation of heavy-fermion systems marks an important subject in the research field of solid state physics. The behaviour of heavy-fermion systems is dominated by the strong correlations of the magnetic moments of the unpaired f-electron spins. At low temperatures, experimentally accessible variables are strongly enhanced so that these systems are especially suited to analyse ground state properties. The central topic of this thesis is the investigation of two intermetallic rare-earth compounds with regard to quantum phase transitions. The latter occur at zero temperature as a function of parameters such as magnetic field, pressure or chemical substitution. They are traceable at finite temperature due to deviations of physical variables from the theory of Fermi liquids established by L. D. Landau. For this purpose, low-temperature experiments were performed down to 20mK and in magnetic fields up to 18T. Electrical resistivity, magnetic ac susceptibility, magnetostriction and thermal expansion were measured.
|
6 |
Lifshitz transitions in RCo5 (R=Y, La) and in Osmium / Lifschitz Übergänge in RCo5 (R=Y, La) und in OsmiumKoudela, Daniela 23 February 2007 (has links) (PDF)
The aim of this thesis was to find anomalies of elastic properties induced by topological changes of the Fermi surface. The latter are called "Lifshitz transitions". Lifshitz transitions are an interesting subject to study because a topological change of the Fermi surface results in a van Hove singularity of the density of states at the Fermi energy, which again induces an anomaly in the free energy and therefore yield anomalies of observable physical quantities. In all cases the question arose, if the corresponding van Hove singularities are large enough to cause anomalies in the elastic properties, which are measurable by nowadays experimental techniques and computable within the accuracy reachable in nowadays computer calculations. The calculations have been done with the Full-Potential nonorthogonal Local-Orbital minimum-basis band-structure code FPLO. To shift the van Hove singularities through the Fermi energy we used hydrostatic pressure, which is mimicked in the computations by decreasing the volume of the unit cell. The materials under consideration had been YCo5 and LaCo5 as examples for magnetic compounds and the element Osmium as an example for a non-magnetic material. All these materials exhibit hexagonal symmetry. In the case of YCo5 our calculations yield a first order Lifshitz transition. Here, an extraordinarily large peak in the spin-up part of the DOS, which is caused by a nearly dispersionless band in the hexagonal plane, crosses the Fermi level under a pressure of about 21 GPa. Thus, the spin-up 3d states become partly depopulated, which results in a drop of the total magnetic moment of 35%. Therefore the transition can be regarded as a transition from strong to weak ferromagnetism. Further, the transition results in a volume collapse of 1.4%. Though the volume collapse is isomorphic, it exhibits the following anisotropy: while the lattice constant in the hexagonal plane is almost smoothly contracting with increasing pressure, the lattice constant in c-direction collapses at the transition-pressure. This volume collapse has been verified in experiment. Analogous calculations have been performed for the compound LaCo5, which is isoelectronic to YCo5. Here as well we predict a first order Lifshitz transition, taking place at a pressure of about 23 GPa. The mechanism of the transition is the same than in YCo5. Again we find a volume collapse under pressure together with a decrease of the magnetic moment. The relative volume change amounts to 1.3%. Like in YCo5, the unit cell dimensions in the hexagonal plane are decreasing almost smoothly with pressure while in c-direction the lattice constant collapses at the transition-pressure. For LaCo5 there are no such experiments done so far to the best of our knowledge. For Osmium we found, that LDA reproduces the ground state volume very well. Furthermore, we could detect three Lifshitz transitions taking place at very high pressures of about 72 GPa, 81 GPa, and 122 GPa. At first, a hole ellipsoid appears at the Gamma-point (V=24.6Å^3, P=72 GPa), then a neck is created at the symmetry-line LH (V=24.2Å^3, P=81 GPa), and finally a hole ellipsoid appears at the L-point (V=23.2 Å^3, P=122 GPa). Due to a degeneracy in the band structure, the hole ellipsoid at the L-point appears at the same pressure when the necks, situated at the symmetry-lines LH merge at L. The corresponding van Hove singularities in the DOS are very tiny and thus no anomalies in the elastic properties could be detected. Furthermore, we showed that the kink in c/a at 25 GPa and at 27 GPa found by Occelli et al. [Occelli et al., Phys. Rev. Lett. 93, 095502 (2004)] and Ma et al. [Ma et al., Phys. Rev. B 72, 174103 (2005)], respectively, is not statistically significant and that (c/a)(P) can be fitted equally well by a smooth function as by piece-wise linear functions as proposed in these references. / Das Ziel dieser Arbeit war es, Anomalien in den elastischen Eigenschaften zu finden, die durch topologische Änderungen der Fermifläche - genannt "Lifschitz Übergänge" - hervorgerufen werden. Lifschitz Übergänge sind ein interessantes Forschungsgebiet, denn die topologische Änderung der Fermifläche führt zu einer van Hove Singularität in der Zustandsdichte, die an der Fermienergie liegt und eine Anomalie in der freien Energie hervorruft und deswegen zu Anomalien in beobachtbaren physikalischen Größen führt. In allen Fällen kam die Frage auf, ob die entsprechenden van Hove Singularitäten groß genug sind, um mit heutigen Methoden meßbare und berechenbare Anomalien in den elastischen Eigenschaften zu verursachen. Die Daten wurden mit dem Computerprogramm FPLO (Full-Potential nonorthogonal Local-Orbital minimum-basis band-structure scheme) berechnet. Um die van Hove Singularitäten durch die Fermienergie zu schieben, verkleinerten wir das Volumen der Einheitszelle, um hydrostatischen Druck zu simulieren. Als zu untersuchende Stoffe wurden YCo5 und LaCo5 als Beispiele für magnetische Verbindungen gewählt und Osmium als Beispiel für ein nicht magnetisches Element. Im Falle von YCo5 fanden wir einen Lifschitz Übergang erster Ordnung. Hier springt ein besonders großer Peak im Spin-auf Teil der Zustandsdichte unter einem Druck von ca. 21 GPa über die Fermienergie. Dadurch werden die Spin-auf 3d Zustände teilweise unbesetzt und das magnetische Moment verringert sich um 35%. Deswegen kann man den Übergang als einen Übergang von starkem Ferromagnetismus zu schwachem Ferromagnetismus bezeichnen. Das Volumen verkleinert sich hierbei um 1.4%. Obwohl dieser Volumenkollaps isomorph ist, zeigt er folgende Anisotropie: während die Gitterkonstante in der hexagonalen Ebene mit zunehmendem Druck mehr oder weniger glatt kontrahiert, kollabiert am Übergangsdruck die Gitterkonstante in c-Richtung. Dieser Volumenkollaps wurde vom Experiment verifiziert. Analoge Rechnungen wurden für die Verbindung LaCo5, die isoelektronisch zu YCo5 ist, durchgeführt. Auch hier sagen wir einen Lifschitz Übergang erster Ordnung voraus, der bei einem Druck von ca. 23 GPa stattfinden wird. Der Mechanismus dieses Übergangs ist der selbe wie in YCo5. Wiederum finden wir einen Volumenkollaps unter Druck zusammen mit einer Verringerung des magnetischen Moments. Die relative Volumenänderung beträgt hier 1.3%. Wie in YCo5 verläuft hier die Kontraktion der Gitterkonstante in der hexagonalen Ebene mehr oder weniger glatt, während die Gitterkonstante in c-Richtung am Übergang kollabiert. Für LaCo5 existieren unseres Wissens hierzu noch keine Experimente. Im Falle von Osmium fanden wir drei Lifschitz Übergänge bei sehr hohen Drücken von ca. 72 GPa, 81 GPa, und 122 GPa. Zuerst bildet sich ein Lochellipsoid am Gamma-Punkt (V=24.6Å^3, P=72 GPa), dann bildet sich ein Hals an der Symmetrielinie LH (V=24.2Å^3, P=81 GPa), und zum Schluß erscheint ein Lochellipsoid am L-Punkt (V=23.2 Å^3, P=122 GPa). Auf Grund einer Entartung in der Bandstruktur taucht das Lochellipsoid am L-Punkt an dem Druck auf, an dem sich auch die Hälse auf der Symmetrielinie LH bei L verbinden. Die entsprechenden van Hove Singularitäten in der Zustandsdichte sind jedoch extrem klein und deswegen können keine Anomalien in den elastischen Eigenschaften detektiert werden. Desweiteren zeigten wir, daß der Knick in c/a, den Occelli et al. [Occelli et al., Phys. Rev. Lett. 93, 095502 (2004)] bei 25 GPa und Ma et al. [Ma et al., Phys. Rev. B 72, 174103 (2005)] bei 27 GPa fanden, statistisch nicht relevant ist und daß (c/a)(P) genauso gut von einer glatten Funktion gefittet wird als von stückweise linearen Funktionen.
|
7 |
Phasengleichgewichte in komplexen Modellsystemen aus Phenolen, Kohlenwasserstoffen und Wasser / Phase Equilibria in Complex Model Systems Containing Phenol, Hydrocarbons and WaterMartin, Antje 05 August 2014 (has links) (PDF)
Die experimentelle Charakterisierung von Phasengleichgewichten (Flüssigkeit-Dampf und Flüssigkeit-Flüssigkeit) erfolgte in binären und ternären Systemen aus aromatischen bzw. aliphatischen Kohlenwasserstoffen, Phenolen und Wasser. Die Trübungstitration diente der Bestimmung von Flüssigkeit-Flüssigkeit-Gleichgewichten, auftretende koexistierende flüssige Phasen wurden analytisch charakterisiert. Mit Hilfe der dynamischen Methode erfolgte die Bestimmung der Flüssigkeit-Dampf-Gleichgewichte.
Die Modellierung der binären Systeme und die Vorausberechnung der ternären Systeme erfolgten mit den Aktivitätskoeffizientenmodellen NRTL und UNIQUAC. Weiterhin wurden die Berechnungen mit der von Elliott, Suresh und Donohue entwickelten Zustandsgleichung (ESD) durchgeführt, welche einen die assoziierenden Wechselwirkungen berücksichtigenden Term beinhaltet. Ferner wurden mit der Gruppenbeitragsmethode UNIFAC die untersuchten binären und ternären Systeme vorausberechnet.
Beide Aktivitätskoeffizientenmodelle können bei der simultanen Modellierung der verfügbaren Phasengleichgewichtsdaten für nahezu alle betrachteten binären Systeme mit sehr guten Ergebnissen überzeugen. Bei der Modellierung mit der Zustandsgleichung ESD müssen deutlich höhere Abweichungen akzeptiert werden.
Die Ergebnisse der Modellierung der binären Systeme lassen sich nicht adäquat auf die Vorausberechnung der ternären Systeme übertragen. UNIQUAC Modell und Zustandsgleichung ESD zeigen im Mittel die geringsten Unterschiede zwischen vorausberechneten und experimentellen Phasengleichgewichten. Deutlich höhere Abweichungen treten im Mittel bei Verwendung des NRTL Modells bzw. der Gruppenbeitragsmethode UNIFAC auf. Die Annahme, mit Hilfe der expliziten Berücksichtigung der Assoziation mit Zustandsgleichung ESD eine deutliche Verbesserung bei der Vorausberechnung entsprechender Phasengleichgewichten zu erzielen, konnte lediglich für Flüssigkeit-Flüssigkeit-Gleichgewichte in Systemen mit aliphatischen Kohlenwasserstoffen bestätigt werden. / The experimental characterizations of phase equilibria (vapor-liquid and liquid-liquid) were determined in binary and ternary systems containing aliphatic and aromatic hydrocarbons, phenols and water. Liquid-liquid equilibria were measured by turbidity titration. The compositions of coexisting phases were determined with analytic methods. The vapor-liquid equilibria were determined by the dynamic method.
The correlation of the binary systems and the prediction of the ternary systems were performed with the activity coefficient models NRTL and UNIQUAC. Furthermore the calculations were realized with an equation of state (ESD) developed by Elliott, Suresh and Donohue, which contain a term for association. Additional predictions of investigated binary and ternary systems were performed with the group contribution method UNIFAC.
Both activity coefficient models convinced with satisfactory results by the simultaneously correlation of the available equilibria data for almost all investigated binary systems. The correlations with the ESD equation of state were performed with higher deviations. A transfer of the results of the binary correlations into the ternary predictions is not possible. The UNIQUAC model and the ESD equation of state performed on average with minor deviations between predicted and experimental phase equilibria. Higher deviations were calculated using the NRTL model respectively the group contribution method UNIFAC. Only liquid-liquid equilibria in systems contain aliphatic hydrocarbons indicates improved prediction results based on the consideration of the association.
|
8 |
Phonon Spectroscopy and Low-Dimensional Electron Systems / The Effect of Acoustic Anisotropy and Carrier Confinement / Phononenspektroskopie und niederdimensionale ElektronensystemeLehmann, Dietmar 01 January 2006 (has links) (PDF)
The generation and propagation of pulses of nonequilibrium acoustic phonons and their interaction with semiconductor nanostructures are investigated. Such studies can give unique information about the properties of low-dimensional electron systems, but in order to interpret the experiments and to understand the underlying physics, a comparison with theoretical models is absolutely necessary. A central point of this work is therefore a universal theoretical approach allowing the simulation and the analysis of phonon spectroscopy measurements on low-dimensional semiconductor structures. The model takes into account the characteristic properties of the considered systems. These properties are the elastic anisotropy of the substrate material leading to focusing effects and highly anisotropic phonon propagation, the anisotropic nature of the different electron-phonon coupling mechanisms, which depend manifestly on phonon wavevector direction and polarization vector, and the sensitivity to the confinement parameters of the low-dimensional electron systems. We show that screening of the electron-phonon interaction can have a much stronger influence on the results of angle-resolved phonon spectroscopy than expected from transport measurements. Since we compare theoretical simulations with real experiments, the geometrical arrangement and the spatial extension of phonon source and detector are also included in the approach enabling a quantitative analysis of the data this way. To illustrate the influence of acoustic anisotropy and carrier confinement on the results of phonon spectroscopy in detail we analyse two different applications. In the first case the low-dimensional electron system acts as the phonon detector and the phonon induced drag current is measured. Our theoretical model enables us to calculate the electric current induced in low-dimensional electron systems by pulses of (ballistic) nonequilibrium phonons. The theoretical drag patterns reproduce the main features of the experimental images very well. The sensitivity of the results to variations of the confining potential of quasi-2D and quasi-1D electrons is demonstrated. This provides the opportunity to use phonon-drag imaging as unique experimental tool for determining the confinement lengths of low-dimensional electron systems. By comparing the experimental and theoretical images it is also possible to estimate the relative strength of the different electron-phonon coupling mechanisms.In the second application the low-dimensional electron system acts as the phonon pulse source and the angle and mode dependence of the acoustic phonon emission by hot 2D electrons is investigated. The results exhibit strong variations in the phonon signal as a function of the detector position and depend markedly on the coupling mechanism, the phonon polarization and the electron confinement width. We demonstrate that the ratio of the strengths of the emitted longitudinal (LA) and transverse (TA) acoustic phonon modes is predicted correctly only by a theoretical model that properly includes the effects of acoustic anisotropy on the electron-phonon matrix elements, the screening, and the form of the confining potential. A simple adoption of widely used theoretical assumptions, like the isotropic approximation for the phonons in the electron-phonon matrix elements or the use of simple variational envelope wavefunctions for the carrier confinement, can corrupt or even falsify theoretical predictions.We explain the `mystery of the missing longitudinal mode' in heat-pulse experiments with hot 2D electrons in GaAs/AlGaAs heterojunctions. We demonstrate that screening prevents a strong peak in the phonon emission of deformation potential coupled LA phonons in a direction nearly normal to the 2D electron system and that deformation potential coupled TA phonons give a significant contribution to the phonon signal in certain emission directions. / Die vorliegende Arbeit beschäftigt sich mit der Ausbreitung von akustischen Nichtgleichgewichtsphononen und deren Wechselwirkung mit Halbleiter-Nanostrukturen. Güte und Effizienz moderner Halbleiter-Bauelemente hängen wesentlich vom Verständnis der Wechselwirkung akustischer Phononen mit niederdimensionalen Elektronensystemen ab. Traditionelle Untersuchungsmethoden, wie die Messung der elektrischen Leitfähigkeit oder der Thermospannung, erlauben nur eingeschränkte Aussagen. Sie mitteln über die beteiligten Phononenmoden und eine Trennung der einzelnen Wechselwirkungsmechanismen ist nur näherungsweise möglich ist. Demgegenüber erlaubt die in der Arbeit diskutierte Methode der winkel- und zeitaufgelösten Phononen-Spektroskopie ein direktes Studium des Beitrags einzelner Phononenmoden, d.h. in Abhängigkeit von Wellenzahlvektor und Polarisation der Phononen. Im Mittelpunkt der Arbeit steht die Fragestellung, wie akustische Anisotropie und Ladungsträger-Confinement die Ergebnisse der winkel- und zeitaufgelösten Phononen-Spektroskopie beeinflussen und prägen. Dazu wird ein umfassendes theoretisches Modell zur Simulation von Phononen-Spektroskopie-Experimenten an niederdimensionalen Halbleitersystemen vorgestellt. Dieses erlaubt sowohl ein qualitatives Verständnis der ablaufenden physikalischen Prozesse als auch eine quantitative Analyse der Messergebnisse. Die Vorteile gegenüber anderen Modellen und Rechnungen liegen dabei in dem konsequenten Einbeziehen der akustischen Anisotropie, nicht nur für die Ausbreitung der Phononen, sondern auch für die Matrixelemente der Wechselwirkung, sowie eine saubere Behandlung des Confinements der Elektronen in den niederdimensionalen Systemen. Dabei werden die Grenzen weit verbreiteter Näherungsansätze für die Elektron-Phonon-Matrixelemente und das Elektronen-Confinement deutlich aufgezeigt. Für den quantitativen Vergleich mit realen Experimenten werden aber auch solche Größen, wie die endliche räumliche Ausdehnung von Phononenquelle und Detektor, die Streuung der Phononen an Verunreinigungen oder die Abschirmung der Elektron-Phonon-Kopplung durch die Elektron-Elektron-Wechselwirkung berücksichtigt.Im zweiten Teil der Arbeit wird der theoretische Apparat auf typische experimentelle Fragestellungen angewandt. Im Falle der Phonon-Drag-Experimente an GaAs/AlGaAs Heterostrukturen wird der durch akustische Nichtgleichgewichtsphononen in zwei- und eindimensionalen Elektronensystemen induzierte elektrische Strom (Phonon-Drag-Strom) als Funktion des Ortes der Phononenquelle bestimmt. Das in der Arbeit hergeleitete theoretische Modell kann die experimentellen Resultate für die Winkelabhängigkeit des Drag-Stromes sowohl für Messungen mit und ohne Magnetfeld qualitativ gut beschreiben. Außerdem wird der Einfluss unterschiedlicher Confinementmodelle und unterschiedlicher Wechselwirkungsmechanismen studiert. Dadurch ist es möglich, aus Phonon-Drag-Messungen Rückschlüsse auf die elektronischen und strukturellen Eigenschaften der niederdimensionalen Elektronensysteme zu ziehen (Fermivektor, effektive Masse, Elektron-Phonon-Kopplungskonstanten, Form des Confinementpotentials). Als weiteres Anwendungsbeispiel wird das Problem der Energierelaxation (aufgeheizter)zweidimensionaler Elektronensysteme in GaAs Heterostrukturen und Quantentrögen untersucht. Für Elektronentemperaturen unterhalb 50 K werden die Gesamtemissionsrate als Funktion der Temperatur und die winkelaufgelöste Emissionsrate (als Funktion der Detektorposition) berechnet. Für beide Größen wird erstmals eine gute Übereinstimmung zwischen Theorie und Experiment gefunden. Es zeigt sich, dass akustische Anisotropie und Abschirmungseffekte zu überraschenden neuen Ergebnissen führen können. Ein Beispiel dafür ist der unerwartet große Beitrag der mittels Deformationspotential-Wechselwirkung emittierten transversalen akustischen Phononen, der bei einer Emission der Phononen näherungsweise senkrecht zum zweidimensionalen System beobachtet werden kann.
|
Page generated in 0.0242 seconds