Spelling suggestions: "subject:"síntese dde microondas"" "subject:"síntese dde microoondas""
1 |
Obtenção de LiFePO4 via síntese assistida por microondas, caracterização e testes eletroquímicos visando sua aplicação como catodos em baterias de íons lítio / Preparation of lifepo4 via microwave assisted synthesis, characterization and electrochemical tests aiming its application as cathodes in lithium ion batteriesSmecellato, Pamela Cristina 24 July 2015 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-09-21T13:28:03Z
No. of bitstreams: 1
TesePCSov.pdf: 3513150 bytes, checksum: 7e2e8d6239392979ea285f15e7463f61 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T18:25:23Z (GMT) No. of bitstreams: 1
TesePCSov.pdf: 3513150 bytes, checksum: 7e2e8d6239392979ea285f15e7463f61 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T18:25:29Z (GMT) No. of bitstreams: 1
TesePCSov.pdf: 3513150 bytes, checksum: 7e2e8d6239392979ea285f15e7463f61 (MD5) / Made available in DSpace on 2016-09-21T18:25:36Z (GMT). No. of bitstreams: 1
TesePCSov.pdf: 3513150 bytes, checksum: 7e2e8d6239392979ea285f15e7463f61 (MD5)
Previous issue date: 2015-07-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work, studies on the optimization of the LiFePO4 synthesis were performed, aiming to obtain a product, at shorter calcination times, with smaller particle size and promising electrochemical properties for applications as cathode material in lithium ion batteries. Crystalline LiFePO4 was synthesized through the combination of carbothermal reduction and microwave-assisted solid-state reaction. The precursors LiOH.H2O, FePO4.4H2O, glucose and graphite were exposed to carbothermal reduction at 200 ºC during 3 h and subsequently calcined by irradiation with microwaves at 800 W for varying times, from 1 to 5 min. The obtained products were analyzed through thermal analysis using TGADTG
and DSC curves. Their structural, morphological and electrochemical properties were investigated by means of X-Ray diffractometry, infrared spectroscopy, scanning electron microscopy and cyclic voltammetry, respectively. The product obtained at 3 min, besides presenting the smallest particle size (100 to 150 nm), was the only one with a crystalline phase and a voltammetric profile characteristic of LiFePO4 between 3,2 and 3,7 V vs. Li/Li+ in a solution of 1 mol L-1 LiClO4 in EC/DMC (1:1 V/V). The electrode was prepared with LiFePO4, acetylene black and PVDF (85:10:5 m/m/m), and the diffusion coefficient of Li ions in the LiFePO4 phase was estimated as 0,29.10–14 cm2 s-1. Galvanostatic charge-discharge tests were performed with this electrode between 3,8 and 3,1 V vs. Li/Li+ under the same experimental conditions as in the cyclic voltammetry. The obtained LiFePO4 presented an initial specific capacity of 100 mA h g-1 at C/4, considering 39,8% of active material. / Neste trabalho foram realizados estudos de otimização da síntese do LiFePO4, buscando obter em menores tempos de calcinação um material com tamanho de partículas menor, com propriedades eletroquímicas promissoras para a aplicação
como catodo em baterias de íons lítio, combinando-se uma reação de redução carbotermal à reação em estado sólido assistida por micro-ondas. Uma mistura dos precursores LiOH.H2O, FePO4.4H2O, glicose e grafite foi submetida à
redução carbotermal a 200 ºC por 3 h e posteriormente calcinada por radiação de micro-ondas a 800 W, variando-se o tempo de calcinação entre 1 e 5 min. Os produtos obtidos foram investigados por análises térmicas através das curvas de TGA-DTG e DSC. Suas propriedades estruturais, morfológicas e eletroquímicas foram investigadas, respectivamente, por difratometria de Raios X, espectroscopia de infravermelho, microscopia eletrônica de varredura e voltametria cíclica. Dentre os produtos obtidos, o material sintetizado a 3 min, além de apresentar tamanho de partículas menor (100 a 150 nm), foi o único que
apresentou a fase cristalina e um perfil voltamétrico característico do LiFePO4 no intervalo de potencial de 3,2 a 3,7 V vs. Li/Li+ em meio de LiClO4 1 mol L-1 em EC/DMC (1:1 V/V), utilizando um eletrodo constituído de fosfato litiado, negro de acetileno e PVDF (85:10:5 m/m/m). O coeficiente de difusão de íons Li no LiFePO4 obtido foi estimado como 0,29.10–14 cm2 s-1. Testes galvanostáticos de carga e descarga foram realizados com este material nas mesmas condições experimentais da voltametria cíclica, com potenciais de corte de 3,8 V e 3,1 V vs. Li/Li+. Valores de capacidade específica inicial de aproximadamente 100 mA h g-1 foram obtidos a C/4, considerando 39,8% de material ativo.
|
2 |
Luminescência persistente no visível e infravermelho em oxissulfetos de terras raras preparados por síntese no estado sólido assistida por micro-ondas / Red and infrared persistent luminescence in rare earth oxysulfides prepared by a microwave-assisted solid-state synthesisMachado, Ian Pompermayer 14 April 2016 (has links)
A maioria dos materiais que apresentam o fenômeno da luminescência persistente possuem o íon Eu2+ como ativador, exibindo emissões sintonizáveis entre o azul e o verde. Entretanto, materiais com luminescência persistente na região do vermelho e infravermelho próximo (Near Infrared - NIR) são ainda pouco reportados na literatura. Portanto, foram preparados neste trabalho os materiais TR2O2S.Ln3+ e TR2O2S.Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu e Yb) pelo método de síntese no estado sólido assistido por micro-ondas. Os materiais foram caracterizados pelas técnicas de Difração de raios X (DRX), Microscopia eletrônica de varredura (MEV), Espectroscopia de absorção no infravermelho (IV), Espectroscopia de absorção de raios X próximo a borda com radiação síncrotron (XANES), Termoluminescência (TL) e Espectroscopia de excitação na região do UV-UV vácuo com radiação síncrotron. Quando excitados na banda de absorção da matriz (band gap) ou por exemplo, nas bandas de transferência de carga LMCT O2-(2p) → Eu3+(4f6) e S2-(3p) → Eu3+(4f6), os materiais TR2O2S:Eu3+ e TR2O2S:Eu3+,Mg2+,Ti3+/IV apresentam um grande número de bandas de emissão finas atribuídas às transições 5D2,1,0 → 7FJ do íon Eu3+. Os dados espectroscópicos sugerem um alto grau de covalência e uma baixa energia de fônons para as matrizes TR2O2S. Além do mais, os materiais TR2O2S:Yb3+ e TR2O2S:Yb3+,Mg2+,Ti3+/IV apresentam bandas de emissão finas na faixa 900-1050 nm (NIR) atribuídas à transição 2F5/2 → 2F7/2 do íon Yb3+. Os mecanismos de luminescência persistente foram propostos para os materiais TR2O2S:Ln3+ e TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu, Yb) e podem ser via armadilhamento de buracos ou via armadilhamento de elétrons. O mecanismo via armadilhamento de buracos é relativo à excitação dos íons Eu3+ e Yb3+ e explica a existência do fenômeno da luminescência persistente nos materiais sem co-dopantes (TR2O2S:Eu3+ e TR2O2S:Yb3+). De outra forma, o mecanismo via armadilhamento de elétrons ocorre nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV e TR2O2S:Yb3+,Mg2+,Ti3+/IV para a emissão oriunda do íon Ti3+. Nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV observa-se o processo de transferência de energia Ti3+ → Eu3+, o que leva a uma luminescência persistente mais eficiente do íon Eu3+. Por outro lado, devido à grande diferença de energia entre os íons Ti3+ e Yb3+, o processo de transferência de energia Ti3+ → Yb3+ não acontece para os materiais TR2O2S:Yb3+,Mg2+,Ti3+/IV. Portanto, a luminescência persistente ocorre via mecanismo de armadilhamento de buracos simultaneamente ao de armadilhamento de elétrons, obtendo uma luminescência persistente com contribuição no visível oriunda do íon Ti3+ e no NIR do íon Yb3+. Os materiais apresentam um grande potencial em aplicações e inovação tecnológica na área de fotônica como sondas biológicas luminescentes e sensibilizadores de células solares. / Most of persistent luminescent materials have the Eu2+ ion as an activator, displaying tunable emission color from blue to green region. However, there is a few examples of red and near infrared (NIR) persistent luminescent materials reported in literature. In this work, the TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) luminescent materials were prepared by microwave-assisted solid state synthesis. The materials were characterized with X-ray diffraction, Scanning electron microscopy, Infrared absorption spectroscopy, synchrotron radiation X-ray absorption spectroscopy near edge (XANES), Thermoluminescence (TL) and synchrotron radiation UV-VUV spectroscopy. When excited at the host absorption band (band gap) or at the ligand-to-metal-charge-transfer bands (LMCT), O2-(2p) → Eu3+(4f6) and S2-(3p)→ Eu3+(4f6), the materials TR2O2S:Eu3+ and TR2O2S:Eu3+,Mg2+,Ti3+/IV display a large number of narrow emission bands assigned to Eu3+ 5D2,1,0→7FJ transitions. Spectroscopic data indicate a high degree of covalency and low phonon energy of TR2O2S hosts. The TR2O2S:Yb3+ and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials show emission bands in the range from 900 to 1050 nm (NIR) assigned to the 2F5/2→2F7/2 transitions of Yb3+ ion. The persistent luminescence mechanisms were proposed for TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) materials, there are two possible ways, hole-trapping or electron-trapping mechanisms. The hole-trapping mechanism is related to the excitation of Eu3+ and Yb3+ ions and explains the persistent luminescence phenomenon in non-co-doped materials (TR2O2S:Eu3+ and TR2O2S:Yb3+). The electron-trapping mechanism governs the persistent luminescence of Ti3+ ion in TR2O2S:Eu3+,Mg2+,Ti3+/IV and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. The Ti3+ → Eu3+ energy transfer was observed in TR2O2S:Eu3+,Mg3+,Ti3+/IV materials and leads to an improvement of Eu3+ persistent luminescence. On the other hand, due to the large energy levels gap between Ti3+ and Yb3+ ions, there is no Ti3+→Yb3+ energy transfer in TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. Therefore, the persistent luminescence in these materials occurs with hole-trapping and electron-trapping mechanisms simultaneously, obtaining a visible-NIR persistent luminescence composed by Ti3+ and Yb3+ emissions, respectively. The materials exhibit great potential in biological and technological innovation in photonic areas such as luminescent probes and solar cell sensitizers
|
3 |
Síntese de micro-ondas para padrões atômicos de frequência de césio¹³³ / Microwave Synthesizer for Cesium¹³³ Atomic Frequencies StandardsOtoboni, Felipe Arduini 10 April 2013 (has links)
Esta dissertação propõe o projeto e a implementação de um sintetizador de sinal pertencente à banda X, com frequência de 9.192 GHz, para promover a transição atômica do átomo de césio durante o ciclo de operação do padrão atômico de frequência do CePOF/IFSC. Diferente do sintetizador em uso, este provê duas fontes de sinais, a fim de realizar a alimentação simétrica da cavidade de micro-ondas. A alimentação simétrica apresenta uma melhoria em relação à montagem experimental atual e visa atenuar os efeitos de gradiente de potência ao quais os átomos estão expostos enquanto cruzam a cavidade de interrogação. O sintetizador também apresenta um controle de fase em um dos sinais, para que seja possível um ajuste de fase entre eles, permitindo que ambos cheguem à cavidade de interrogação em fase. O método utilizado para a síntese dos sinais é o indireto, onde o sinal de interesse é obtido por meio de osciladores e componentes que possibilitam a manipulação algébrica das frequências, aliados aos circuitos de travamento para controle dos osciladores / This text considers the design and implementation of an X-band signal synthesizer, with a 9.192 GHz frequency, to promote the atomic transition of cesium during the operation process of the CePOF/IFSCs atomic frequency standard. Unlike the current synthesizer, the present one provides two sources of signal, in order to perform the symmetrical feed of the microwave cavity. The symmetrical feed is an improvement compared to the current experimental set up and aims at reducing the power gradient effects to which the atoms are exposed when travelling throughout the interrogation cavity. The synthesizer also has a phase control in one of the signals, in order to ensure that both signals will get into the interrogation cavity in phase. The synthesis method used is the indirect one; the desired signal is formed by means of oscillators and devices that allow the algebraic manipulation of frequencies, combined with lock circuits to control the oscillators
|
4 |
Luminescência persistente no visível e infravermelho em oxissulfetos de terras raras preparados por síntese no estado sólido assistida por micro-ondas / Red and infrared persistent luminescence in rare earth oxysulfides prepared by a microwave-assisted solid-state synthesisIan Pompermayer Machado 14 April 2016 (has links)
A maioria dos materiais que apresentam o fenômeno da luminescência persistente possuem o íon Eu2+ como ativador, exibindo emissões sintonizáveis entre o azul e o verde. Entretanto, materiais com luminescência persistente na região do vermelho e infravermelho próximo (Near Infrared - NIR) são ainda pouco reportados na literatura. Portanto, foram preparados neste trabalho os materiais TR2O2S.Ln3+ e TR2O2S.Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu e Yb) pelo método de síntese no estado sólido assistido por micro-ondas. Os materiais foram caracterizados pelas técnicas de Difração de raios X (DRX), Microscopia eletrônica de varredura (MEV), Espectroscopia de absorção no infravermelho (IV), Espectroscopia de absorção de raios X próximo a borda com radiação síncrotron (XANES), Termoluminescência (TL) e Espectroscopia de excitação na região do UV-UV vácuo com radiação síncrotron. Quando excitados na banda de absorção da matriz (band gap) ou por exemplo, nas bandas de transferência de carga LMCT O2-(2p) → Eu3+(4f6) e S2-(3p) → Eu3+(4f6), os materiais TR2O2S:Eu3+ e TR2O2S:Eu3+,Mg2+,Ti3+/IV apresentam um grande número de bandas de emissão finas atribuídas às transições 5D2,1,0 → 7FJ do íon Eu3+. Os dados espectroscópicos sugerem um alto grau de covalência e uma baixa energia de fônons para as matrizes TR2O2S. Além do mais, os materiais TR2O2S:Yb3+ e TR2O2S:Yb3+,Mg2+,Ti3+/IV apresentam bandas de emissão finas na faixa 900-1050 nm (NIR) atribuídas à transição 2F5/2 → 2F7/2 do íon Yb3+. Os mecanismos de luminescência persistente foram propostos para os materiais TR2O2S:Ln3+ e TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd e Y; Ln3+: Eu, Yb) e podem ser via armadilhamento de buracos ou via armadilhamento de elétrons. O mecanismo via armadilhamento de buracos é relativo à excitação dos íons Eu3+ e Yb3+ e explica a existência do fenômeno da luminescência persistente nos materiais sem co-dopantes (TR2O2S:Eu3+ e TR2O2S:Yb3+). De outra forma, o mecanismo via armadilhamento de elétrons ocorre nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV e TR2O2S:Yb3+,Mg2+,Ti3+/IV para a emissão oriunda do íon Ti3+. Nos materiais TR2O2S:Eu3+,Mg2+,Ti3+/IV observa-se o processo de transferência de energia Ti3+ → Eu3+, o que leva a uma luminescência persistente mais eficiente do íon Eu3+. Por outro lado, devido à grande diferença de energia entre os íons Ti3+ e Yb3+, o processo de transferência de energia Ti3+ → Yb3+ não acontece para os materiais TR2O2S:Yb3+,Mg2+,Ti3+/IV. Portanto, a luminescência persistente ocorre via mecanismo de armadilhamento de buracos simultaneamente ao de armadilhamento de elétrons, obtendo uma luminescência persistente com contribuição no visível oriunda do íon Ti3+ e no NIR do íon Yb3+. Os materiais apresentam um grande potencial em aplicações e inovação tecnológica na área de fotônica como sondas biológicas luminescentes e sensibilizadores de células solares. / Most of persistent luminescent materials have the Eu2+ ion as an activator, displaying tunable emission color from blue to green region. However, there is a few examples of red and near infrared (NIR) persistent luminescent materials reported in literature. In this work, the TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) luminescent materials were prepared by microwave-assisted solid state synthesis. The materials were characterized with X-ray diffraction, Scanning electron microscopy, Infrared absorption spectroscopy, synchrotron radiation X-ray absorption spectroscopy near edge (XANES), Thermoluminescence (TL) and synchrotron radiation UV-VUV spectroscopy. When excited at the host absorption band (band gap) or at the ligand-to-metal-charge-transfer bands (LMCT), O2-(2p) → Eu3+(4f6) and S2-(3p)→ Eu3+(4f6), the materials TR2O2S:Eu3+ and TR2O2S:Eu3+,Mg2+,Ti3+/IV display a large number of narrow emission bands assigned to Eu3+ 5D2,1,0→7FJ transitions. Spectroscopic data indicate a high degree of covalency and low phonon energy of TR2O2S hosts. The TR2O2S:Yb3+ and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials show emission bands in the range from 900 to 1050 nm (NIR) assigned to the 2F5/2→2F7/2 transitions of Yb3+ ion. The persistent luminescence mechanisms were proposed for TR2O2S:Ln3+ and TR2O2S:Ln3+,Mg2+,Ti3+/IV (TR3+: La, Gd and Y; Ln3+: Eu and Yb) materials, there are two possible ways, hole-trapping or electron-trapping mechanisms. The hole-trapping mechanism is related to the excitation of Eu3+ and Yb3+ ions and explains the persistent luminescence phenomenon in non-co-doped materials (TR2O2S:Eu3+ and TR2O2S:Yb3+). The electron-trapping mechanism governs the persistent luminescence of Ti3+ ion in TR2O2S:Eu3+,Mg2+,Ti3+/IV and TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. The Ti3+ → Eu3+ energy transfer was observed in TR2O2S:Eu3+,Mg3+,Ti3+/IV materials and leads to an improvement of Eu3+ persistent luminescence. On the other hand, due to the large energy levels gap between Ti3+ and Yb3+ ions, there is no Ti3+→Yb3+ energy transfer in TR2O2S:Yb3+,Mg2+,Ti3+/IV materials. Therefore, the persistent luminescence in these materials occurs with hole-trapping and electron-trapping mechanisms simultaneously, obtaining a visible-NIR persistent luminescence composed by Ti3+ and Yb3+ emissions, respectively. The materials exhibit great potential in biological and technological innovation in photonic areas such as luminescent probes and solar cell sensitizers
|
5 |
Síntese de micro-ondas para padrões atômicos de frequência de césio¹³³ / Microwave Synthesizer for Cesium¹³³ Atomic Frequencies StandardsFelipe Arduini Otoboni 10 April 2013 (has links)
Esta dissertação propõe o projeto e a implementação de um sintetizador de sinal pertencente à banda X, com frequência de 9.192 GHz, para promover a transição atômica do átomo de césio durante o ciclo de operação do padrão atômico de frequência do CePOF/IFSC. Diferente do sintetizador em uso, este provê duas fontes de sinais, a fim de realizar a alimentação simétrica da cavidade de micro-ondas. A alimentação simétrica apresenta uma melhoria em relação à montagem experimental atual e visa atenuar os efeitos de gradiente de potência ao quais os átomos estão expostos enquanto cruzam a cavidade de interrogação. O sintetizador também apresenta um controle de fase em um dos sinais, para que seja possível um ajuste de fase entre eles, permitindo que ambos cheguem à cavidade de interrogação em fase. O método utilizado para a síntese dos sinais é o indireto, onde o sinal de interesse é obtido por meio de osciladores e componentes que possibilitam a manipulação algébrica das frequências, aliados aos circuitos de travamento para controle dos osciladores / This text considers the design and implementation of an X-band signal synthesizer, with a 9.192 GHz frequency, to promote the atomic transition of cesium during the operation process of the CePOF/IFSCs atomic frequency standard. Unlike the current synthesizer, the present one provides two sources of signal, in order to perform the symmetrical feed of the microwave cavity. The symmetrical feed is an improvement compared to the current experimental set up and aims at reducing the power gradient effects to which the atoms are exposed when travelling throughout the interrogation cavity. The synthesizer also has a phase control in one of the signals, in order to ensure that both signals will get into the interrogation cavity in phase. The synthesis method used is the indirect one; the desired signal is formed by means of oscillators and devices that allow the algebraic manipulation of frequencies, combined with lock circuits to control the oscillators
|
6 |
Síntese e investigação espectroscópica de novos fósforos dopados com Ti e Ce3+ para aplicação em luminescência persistente e iluminação de estado sólido / Synthesis and spectroscopic investigation of new phosphors doped with Ti and Ce ions for persistent luminescence and solid-state lighting applicationsCarvalho Junior, José Miranda de 09 October 2015 (has links)
Os materiais luminescentes convencionais produzidos industrialmente e aplicados em dispositivos fotônicos são baseados em matrizes inorgânicas contendo íons terras raras (TR). Entretanto, devido à grande flutuação de preço nas matérias primas de óxido de terras raras, se torna necessário a busca por materiais alternativos. Dessa forma, materiais luminescentes baseado em matrizes inorgânicas dopadas com íons Tin+ foram preparadas. Os materiais luminescentes de ZrO2 não dopado e dopado com íons Tin+ e TR3+ foram preparados pelo método sol-gel com diferentes razões W = [H2 O]/[TBZ] (TBZ: butóxido de zircônio) e calcinado a diferentes temperaturas (500, 600, 800 e 1000 °C). Além disso, o método de aquecimento dielétrico assistido por radiação micro-ondas foi utilizado para preparar a série de oxissulfetos de terras raras (TR2O2S; TR: La, Gd e Y) e Lu2O3 dopados com íons Ti e Mg, bem como o material Y3Al5O12 dopado com íons Ce3+. Os materiais foram caracterizados estruturalmente pela técnica de difração de raios X pelo método do pó, seguida do refinamento pelo método de Rietveld para extração dos parâmetros estruturais. Diferentes composições de fase tetragonal (t-) e monoclínica (m-) de ZrO2 foram obtidas com a variação dos parâmetros de síntese. Os resultados indicaram que a fase cristalina influencia diretamente nas propriedades ópticas dos materiais. As fases tetragonal e monoclínica da matriz de ZrO2, exibem cores de emissão azul e verde, respectivamente. Os dados de microscopia eletrônica de transmissão foram utilizados para caracterizar os nanocristais que possuem tamanho de partícula média de 50 nm. Os estados de valência dos íons TR dopados nos materiais de ZrO2 foram analisados utilizando a técnica de XANES, enquanto que a valência do íon Ti foi sondada pela técnica de EPR. A espectroscopia XANES por radiação Síncrotron foi utilizada para estudar a variação de valência dos íons Pr e Tb dopados na matriz de ZrO2 quando co-dopadas com íons Gd3+ que favorecem a formação de vacâncias de óxido, que possibilitam a redução TRIV → TR3+. Os materiais de ZrO2 foram estudados espectroscopicamente com a finalidade de inferir que a luminescência da matriz é oriunda de íons Ti3+ presentes como impurezas na rede cristalina. Todos os materiais dopados com íons Ti apresentaram bandas de emissão largas e intensas de cores sintonizáveis desde o azul até vermelho, devido aos diferentes deslocamento das bandas relacionadas aos níveis 3d1 do íon Ti3+ em diferentes ambientes químicos. Os íons S2- promovem um deslocamento das bandas de emissão para região do vermelho. Também foi investigado o fenômeno da luminescência persistente dos materiais dopados com íons Ti e estudado a influência da co-dopagem de íons geradores de vacâncias de óxido na duração da luminescência persistente. Os dados permitiram o desenvolvimento de mecanismos da luminescência persistente em função das matrizes e íons dopantes. Também, o fósforo Y3Al5O12:Ce3+ foi montado a base de um polímero óptico de silicone e utilizando um LED de GaN de alta potência. O dispositivo de iluminação de estado sólido gera luz branca de alta intensidade com rendimentos quânticos (Φ) da ordem de 80%. Por fim, os processos fotoluminescentes do íon Tin+ e Ce3+ dopado em diferentes matrizes proporcionaram a ampliação da gama de materiais inorgânicos para conversão de energia, que contribui para a pesquisa em materiais economicamente viáveis e sustentáveis. / The most commercially available luminescent materials to be applied in devices are based on inorganic matrices containing rare earth ions (RE). However, due to the large price fluctuation of rare earth oxides, it is necessary to search for new alternative materials. Therefore, luminescent materials based on inorganic matrices doped with titanium ions were prepared. The undoped and Ti and RE3+ doped ZrO2 materials were prepared by sol-gel method and calcined at different temperatures (500, 600, 800 and 1000 °C). Besides, the dielectric heating method assisted by microwave radiation was used to prepare the rare earth series of oxysulfides (TR2O2S; RT: La, Gd and Y) and Lu2O3 doped with Ti and Mg ions, as well as the Ce3+ doped Y3Al5O12 phosphors. The materials were structurally characterized by X-ray powder diffraction technique along with the Rietveld refinement method for extracting structural parameters. It was possible to obtain different crystalline phase composition of tetragonal and monoclinic ZrO2 by varying the synthetic parameters. The experimental data show that the crystalline structure affects the photonic properties in a direct way. For example, the tetragonal and monoclinic ZrO2 phases show blue and green emission, respectively. The transmission electron microscopy indicated that the nanocrystals have 50 nm of average size. The valence states of the RE ions were analyzed using XANES technique, whereas the valence of the Ti ion was probed by the EPR technique. The Synchrotron Radiation XANES spectroscopy was used to study the valence changes of Pr and Tb doped in ZrO2 matrix when co-doped with Gd3+ ions that favors the formation of oxide vacancies, leading to the reduction REIV → RE3+. The ZrO2 materials were studied spectroscopically and it was possible to infer that the luminescence of the ZrO2 matrix is derived from Ti3+ ions present as impurities in its crystal lattice. All materials doped with Ti ions showed intense broad emission bands with tunable colors from blue to red due to different splitting of 3d1 energy levels of the Ti3+ ion in different chemical environments. The chemical environments containing S2- ions promote a redshift of the emission bands. All Ti doped materials showed the phenomenon of persistent luminescence and the role of co-dopants were investigated as well. Based on these optical results, the mechanisms of the persistent luminescence were developed. Also, the luminescent Y3Al5O12:Ce3+ material obtained by the rapid microwave proved to be suitable for mounting a solid state lighting device having quantum yields (Φ) of 80%. The device was assembled to an optical base polymer of silicone and using a high-power GaN LED, generating high intensity white light. Finally, the photoluminescent processes of the Ti and Ce3+ ions doped in different matrices provided the expansion of the range of inorganic materials for energy conversion, which can contribute to the research on more economically viable and sustainable materials.
|
7 |
Síntese e investigação espectroscópica de novos fósforos dopados com Ti e Ce3+ para aplicação em luminescência persistente e iluminação de estado sólido / Synthesis and spectroscopic investigation of new phosphors doped with Ti and Ce ions for persistent luminescence and solid-state lighting applicationsJosé Miranda de Carvalho Junior 09 October 2015 (has links)
Os materiais luminescentes convencionais produzidos industrialmente e aplicados em dispositivos fotônicos são baseados em matrizes inorgânicas contendo íons terras raras (TR). Entretanto, devido à grande flutuação de preço nas matérias primas de óxido de terras raras, se torna necessário a busca por materiais alternativos. Dessa forma, materiais luminescentes baseado em matrizes inorgânicas dopadas com íons Tin+ foram preparadas. Os materiais luminescentes de ZrO2 não dopado e dopado com íons Tin+ e TR3+ foram preparados pelo método sol-gel com diferentes razões W = [H2 O]/[TBZ] (TBZ: butóxido de zircônio) e calcinado a diferentes temperaturas (500, 600, 800 e 1000 °C). Além disso, o método de aquecimento dielétrico assistido por radiação micro-ondas foi utilizado para preparar a série de oxissulfetos de terras raras (TR2O2S; TR: La, Gd e Y) e Lu2O3 dopados com íons Ti e Mg, bem como o material Y3Al5O12 dopado com íons Ce3+. Os materiais foram caracterizados estruturalmente pela técnica de difração de raios X pelo método do pó, seguida do refinamento pelo método de Rietveld para extração dos parâmetros estruturais. Diferentes composições de fase tetragonal (t-) e monoclínica (m-) de ZrO2 foram obtidas com a variação dos parâmetros de síntese. Os resultados indicaram que a fase cristalina influencia diretamente nas propriedades ópticas dos materiais. As fases tetragonal e monoclínica da matriz de ZrO2, exibem cores de emissão azul e verde, respectivamente. Os dados de microscopia eletrônica de transmissão foram utilizados para caracterizar os nanocristais que possuem tamanho de partícula média de 50 nm. Os estados de valência dos íons TR dopados nos materiais de ZrO2 foram analisados utilizando a técnica de XANES, enquanto que a valência do íon Ti foi sondada pela técnica de EPR. A espectroscopia XANES por radiação Síncrotron foi utilizada para estudar a variação de valência dos íons Pr e Tb dopados na matriz de ZrO2 quando co-dopadas com íons Gd3+ que favorecem a formação de vacâncias de óxido, que possibilitam a redução TRIV → TR3+. Os materiais de ZrO2 foram estudados espectroscopicamente com a finalidade de inferir que a luminescência da matriz é oriunda de íons Ti3+ presentes como impurezas na rede cristalina. Todos os materiais dopados com íons Ti apresentaram bandas de emissão largas e intensas de cores sintonizáveis desde o azul até vermelho, devido aos diferentes deslocamento das bandas relacionadas aos níveis 3d1 do íon Ti3+ em diferentes ambientes químicos. Os íons S2- promovem um deslocamento das bandas de emissão para região do vermelho. Também foi investigado o fenômeno da luminescência persistente dos materiais dopados com íons Ti e estudado a influência da co-dopagem de íons geradores de vacâncias de óxido na duração da luminescência persistente. Os dados permitiram o desenvolvimento de mecanismos da luminescência persistente em função das matrizes e íons dopantes. Também, o fósforo Y3Al5O12:Ce3+ foi montado a base de um polímero óptico de silicone e utilizando um LED de GaN de alta potência. O dispositivo de iluminação de estado sólido gera luz branca de alta intensidade com rendimentos quânticos (Φ) da ordem de 80%. Por fim, os processos fotoluminescentes do íon Tin+ e Ce3+ dopado em diferentes matrizes proporcionaram a ampliação da gama de materiais inorgânicos para conversão de energia, que contribui para a pesquisa em materiais economicamente viáveis e sustentáveis. / The most commercially available luminescent materials to be applied in devices are based on inorganic matrices containing rare earth ions (RE). However, due to the large price fluctuation of rare earth oxides, it is necessary to search for new alternative materials. Therefore, luminescent materials based on inorganic matrices doped with titanium ions were prepared. The undoped and Ti and RE3+ doped ZrO2 materials were prepared by sol-gel method and calcined at different temperatures (500, 600, 800 and 1000 °C). Besides, the dielectric heating method assisted by microwave radiation was used to prepare the rare earth series of oxysulfides (TR2O2S; RT: La, Gd and Y) and Lu2O3 doped with Ti and Mg ions, as well as the Ce3+ doped Y3Al5O12 phosphors. The materials were structurally characterized by X-ray powder diffraction technique along with the Rietveld refinement method for extracting structural parameters. It was possible to obtain different crystalline phase composition of tetragonal and monoclinic ZrO2 by varying the synthetic parameters. The experimental data show that the crystalline structure affects the photonic properties in a direct way. For example, the tetragonal and monoclinic ZrO2 phases show blue and green emission, respectively. The transmission electron microscopy indicated that the nanocrystals have 50 nm of average size. The valence states of the RE ions were analyzed using XANES technique, whereas the valence of the Ti ion was probed by the EPR technique. The Synchrotron Radiation XANES spectroscopy was used to study the valence changes of Pr and Tb doped in ZrO2 matrix when co-doped with Gd3+ ions that favors the formation of oxide vacancies, leading to the reduction REIV → RE3+. The ZrO2 materials were studied spectroscopically and it was possible to infer that the luminescence of the ZrO2 matrix is derived from Ti3+ ions present as impurities in its crystal lattice. All materials doped with Ti ions showed intense broad emission bands with tunable colors from blue to red due to different splitting of 3d1 energy levels of the Ti3+ ion in different chemical environments. The chemical environments containing S2- ions promote a redshift of the emission bands. All Ti doped materials showed the phenomenon of persistent luminescence and the role of co-dopants were investigated as well. Based on these optical results, the mechanisms of the persistent luminescence were developed. Also, the luminescent Y3Al5O12:Ce3+ material obtained by the rapid microwave proved to be suitable for mounting a solid state lighting device having quantum yields (Φ) of 80%. The device was assembled to an optical base polymer of silicone and using a high-power GaN LED, generating high intensity white light. Finally, the photoluminescent processes of the Ti and Ce3+ ions doped in different matrices provided the expansion of the range of inorganic materials for energy conversion, which can contribute to the research on more economically viable and sustainable materials.
|
Page generated in 0.0996 seconds