• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 22
  • 16
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 122
  • 38
  • 24
  • 22
  • 21
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Estudo de soluções localizadas na equação não linear de Schrödinger logarítmica, saturada e com efeitos de altas ordens / Modulation of localized solutions in a inhomogeneous nonlinear Schrödinger equation with logarithmic, saturated and high order effects nonlinearities

Alves, Luciano Calaça 07 June 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-17T13:07:11Z No. of bitstreams: 2 Tese - Luciano Calaça Alves - 2018.pdf: 4699371 bytes, checksum: 706846314ebb74648be890b03e18d4cc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-17T13:55:46Z (GMT) No. of bitstreams: 2 Tese - Luciano Calaça Alves - 2018.pdf: 4699371 bytes, checksum: 706846314ebb74648be890b03e18d4cc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-17T13:55:46Z (GMT). No. of bitstreams: 2 Tese - Luciano Calaça Alves - 2018.pdf: 4699371 bytes, checksum: 706846314ebb74648be890b03e18d4cc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-06-07 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / This work presents the study of solitary wave solutions, known as solitons, in non-linear and non- homogeneous media using non-linear Schrödinger equations. Three cases are studied: first considering a logarithmic nonlinear term; second with saturation effect and finally including effects of high orders (Raman scattering). Solutions are modulated by three different types of potential. First, linear in the spatial and oscillatory coordinate in the temporal coordinate. The second, quadratic in the spatial and oscillatory in the temporal coordinates. Finally, it is also modulated using a mixed potential, which is the junction of the two potentials presented above. After including inomogeneities in linear and nonlinear coefficients, the similarity transformation technique is used to convert the non-linear, non-autonomous equation into an autonomous one that will be solved analytically. This field of study has potential applications in crystals, optical fibers and in Bose- Einstein condensates, also serving to understand the fundamentals related to this state of matter. The stability of the solutions are checked by numerical simulations. / Este trabalho apresenta o estudo de soluções de ondas solitárias, conhecidas como sólitons, em meios não lineares e não homogêneos por meio de equações não lineares de Schrödinger. São estudados três casos: primeiro considerando um termo não linear do tipo logarítmico; segundo com efeito de saturação e por último incluindo efeitos de altas ordens (espalhamento Raman). As soluções são moduladas por três tipos diferentes de potencial. O primeiro, linear na coordenada espacial e oscilatório na coordenada temporal. O segundo, quadrático na coordenada espacial e oscilatório na temporal. Por fim, modula-se também utilizando um potencial misto, que é a junção dos dois potenciais apresentados anteriormente. Depois de incluir heterogeneidades nos coeficientes lineares e não lineares, é utilizada a técnica da transformação de similaridade para converter a equação não linear, não autônoma em uma autônoma que será resolvida analiticamente. Esse campo de estudo tem potenciais aplicações em cristais, fibras ópticas e em condensados de Bose-Einstein, servindo também para o entendimento dos fundamentos relacionados a esse estado da matéria. A estabilidade das soluções são checadas por meio de simulações numéricas.
62

Étude des états fondamentaux du Laplacien magnétique en cas d'annulation locale du champ / Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field

Miqueu, Jean-Philippe 26 September 2016 (has links)
Cette thèse concerne l'étude spectrale de l'opérateur de Schrödinger avec champ magnétique et paramètre semi-classique, sur un domaine borné et régulier en dimension 2, avec condition de Neumann au bord. On s'intéresse plus particulièrement au cas où le champ magnétique s'annule sur une union de courbes régulières. L'objectif est de comprendre l'influence d'une annulation du champ et d'expliciter le comportement des basses valeurs propres et des fonctions propres associées lorsque le paramètre semi-classique tend vers 0. Dans cette limite - dite semi-classique - la description précise des éléments propres passe par la compréhension de différents opérateurs modèles sous-jacents. La première partie est consacrée au cas d'un champ magnétique qui s'annule de manière non dégénérée le long d'une courbe régulière simple intersectant le bord du domaine. La deuxième partie concerne le cas d'une annulation quadratique à l'intérieur du domaine. Dans de ces deux cas d'étude, on donne dans un premier temps un équivalent asymptotique de la première valeur propre. La majoration s'obtient par une construction de fonctions tests appropriées tandis que la minoration s'obtient par une méthode de localisation quantique. Ce dernier aspect est délicat car il s'agit de gérer la transition entre des modèles ayant des homogénéités différentes. Dans un second temps, on examine les propriétés de localisation des premières fonctions propres, via des estimées d'Agmon semi-classiques. Ceci permet d'obtenir un développement asymptotique complet des premières valeurs propres, à n'importe quel ordre. Dans le cas d'une annulation quadratique, la thèse est complétée par une étude de l'opérateur modèle pour lequel le lieu d'annulation est une union de deux droites sécantes faisant un angle non nul. Dans la limite petit angle, la structure du spectre est gouvernée un symbole opérateur à deux paramètres. On établit différentes propriétés de ce symbole opérateur et de la fonction de bande associée. Des simulations numériques basées sur la librairie éléments finis Mélina++ ont guidé l'analyse et illustrent les résultats obtenus. Les difficultés numériques - dues aux fortes oscillations de la phase dans l'expression des fonctions propres - sont gérées grâce à une interpolation polynomiale de haut degré. / This thesis is devoted to the spectral analysis of the Schrödinger operator with magnetic field and semiclassical parameter, on a bounded regular domain in dimension two, with Neumann boundary condition. We investigate the case when the magnetic field vanishes along a union of smooth curves. The aim is to understand the influence of the cancellation and to study the behaviour of the lowest eigenvalues and the associated eigenfunctions when the semiclassical parameter tends to 0. In this regime - called the semiclassical limit - the precise description of the eigenpairs requires the understanding of underlying models. In the first part, we consider a magnetic field which vanishes linearly along a smooth simple curve intersecting the boundary. The second part is devoted to the case when the magnetic field vanishes quadratically. In both cases, we firstly give a one term asymptotics of the lowest eigenvalue. The upper bound is obtained by using appropriate test functions whereas the lower bound results from a localisation process. This last aspect constitutes the most difficult part because of the different scales involved. Then we investigate the localisation properties of the first eigenfunctions thanks to semiclassical Agmon estimates. This leads to a full asymptotic expansion of the first eigenvalues. In the case when the magnetic field vanishes quadratically, we study in addition the model operator for which the cancellation set is a union of two straight lines, whose intersection form a non-zero angle. In the small angle regime, the structure of the spectrum is governed by an operator symbol with two parameters. We establish different properties of this symbol and the associated band function. Numerical simulations based on the finite elements library Mélina++ have guided the analysis and illustrate the obtained results. The difficulties of the numerical computations - induced by the high phase oscillations of the eigenfunctions - are circumvented by polynomial interpolation of high degree.
63

Limite de champ moyen pour des modèles discrets et équation de Schrödinger non linéaire discrète / Mean field limit for discrete models and nonlinear discrete Schrödinger equation

Pawilowski, Boris 11 December 2015 (has links)
Dans une série de travaux Zied Ammari et Francis Nier ont développé des méthodes pour étudier la dynamique de champ moyen bosonique pour des états quantiques généraux pouvant présenter des corrélations. Ils ont obtenu des formules pour décrire la dynamique des corrélations, ou plus généralement des matrices densité réduites d'ordre arbitraire. Cette thématique a été largement développée ces dernières années. Norbert Mauser en a été un des contributeurs, ainsi que sur la notion de mesure de Wigner qui est la clé de l'analyse développée par Z. Ammari et F. Nier. En général, il est admis que l'asymptotique de champ moyen est une bonne approximation du problème à N particules quand N dépasse la dizaine. Cela concerne l'asymptotique de la matrice densité réduite à une particule qui ne décrit pas la dynamique des corrélations. Un objectif est de tester la validité de la dynamique de champ moyen pour les matrices densité réduites à 2-particules. Pour des tests numériques, les modèles discrets qui n'ont pas été vraiment traités en détail dans les travaux précédents de Z. Ammari et F. Nier semblent bien adaptés. La thèse comprendra donc plusieurs étapes: adapter les résultats précédents de Z. Ammari et F. Nier à des modèles discrets , développer des méthodes numériques pour des systèmes simples mais pertinents, permettant de valider l'approximation de champ moyen et les formules pour la dynamique des corrélations. Au niveau numérique, on utilise des schémas numériques symplectiques, développés spécifiquement ces dernières années pour la discrétisation des équations hamiltoniennes. Une dernière étape concerne la combinaison des deux asymptotiques, champ moyen et approximation des modèles continus par les modèles discrets. / In a serie of works Z. Ammari and F. Nier developed methods to study the dynamics of bosonic mean field for general quantum states which can present correlations. They obtained formulas to describe the dynamics of the correlations, or more generally reduced density matrices with an arbitrary order. This topic was widely developed these last years. N.J. Mauser was one of contributors, as well as on the notion of Wigner measure which is the key of the analysis developed by Z. Ammari and F. Nier. Generally, the mean field asymptotic is admitted is a good approximation of the N-body problem when N exceed about ten. It concerns the asymptotics of the reduced density matrices for one particle which does not describe the dynamics of the correlations. An objective is to test the validity of the mean field dynamics for reduced density matrices for 2 particles. For numerical tests, the discrete models which were not really handled in detail in the previous works of Z. Ammari and F. Nier seem adapted well. The thesis will thus include several steps: adapt the previous results from Z. Ammari and F. Nier to discrete models , develop numerical methods, for simple but relevant systems, allowing to validate the approximation of mean field and the formulas for the dynamics of the correlations. About numerics, symplectic numerical scheme are used, developed specifically these last years for the discretization of the hamiltonian equations. A last possible step concerns the combination of both asymptotics, that is mean field and approximation of the continuous models by the discrete models.
64

Identification de dynamique pour les systèmes bilinéaires et non-linéaires en présence d'incertitudes / Dynamic identification for bi-linear and non-linear systems in presence of uncertainties

Fu, Ying 09 December 2016 (has links)
Dans le cadre du contrôle quantique bilinéaire, cette thèse étudie la possibilité de retrouver l'Hamiltonien et/ou le moment dipolaire à l'aide de mesures d'observables pour un ensemble grand de contrôles. Si l'implémentation du contrôle fait intervenir des bruits alors les mesures prennent la forme de distributions de probabilité. Nous montrons qu'il y a toujours unicité (à des phases près) des Hamiltoniens de du moment dipolaire retrouvés. Plusieurs modèles de bruit sont étudiés: bruit discrète constant additif et multiplicatif ainsi qu'un modèle de bruit dans les phases sous forme de processus Gaussien. Les résultats théoriques sont illustrés par des implémentations numériques. / The problem of recovering the Hamiltonian and dipole moment, termed inversion, is considered in a bilinear quantum control framework. The process uses as inputs some measurable quantities (observables) for each admissible control. If the implementation of the control is noisy the data available is only in the form of probability laws of the measured observable. Nevertheless it is proved that the inversion process still has unique solutions (up to phase factors). Several models of noise are considered including the discrete noise model, the multiplicative amplitude noise model and a Gaussian process phase model. Both theoretical and numerical results are established.
65

Diffusion in Cauchy Elastic Solid

Danielewski, Marek, Sapa, Lucjan 24 June 2022 (has links)
It is commonly accepted that a starting point of the science of diffusion is the phenomenological diffusion equation postulated by German physiologist Adolf Fick inspired by experiments on diffusion by Thomas Graham and Robert Brown. Fick’s diffusion equation has been interpreted decades later by Albert Einstein and Marian Smoluchowski. Here we will show that the theory of diffusion has its elegant mathematical foundations formulated three decades before Fick by French mathematician Augustin Cauchy (~1822). The diffusion equation is straightforward consequence of his model of the elastic solid - the classical balance equations for isotropic, elastic crystal. Basing on the Cauchy model and using the quaternion algebra we present a rigorous derivation of the quaternion form of the diffusion equation. The fundamental consequences of all derived equations and relations for physics, chemistry and the future prospects are presented.
66

Design and Optimization of DSP Techniques for the Mitigation of Linear and Nonlinear Impairments in Fiber-Optic Communication Systems / DESIGN AND OPTIMIZATION OF DIGITAL SIGNAL PROCESSING TECHNIQUES FOR THE MITIGATION OF LINEAR AND NONLINEAR IMPAIRMENTS IN FIBER-OPTIC COMMUNICATION SYSTEMS

Maghrabi, Mahmoud MT January 2021 (has links)
Optical fibers play a vital role in modern telecommunication systems and networks. An optical fiber link imposes some linear and nonlinear distortions on the propagating light-wave signal due to the inherent dispersive nature and nonlinear behavior of the fiber. These distortions impede the increasing demand for higher data rate transmission over longer distances. Developing efficient and computationally non-expensive digital signal processing (DSP) techniques to effectively compensate for the fiber impairments is therefore essential and of preeminent importance. This thesis proposes two DSP-based approaches for mitigating the induced distortions in short-reach and long-haul fiber-optic communication systems. The first approach introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). The proposed ANN-NFFE mitigates nonlinear impairments of short-haul optical fiber communication systems, arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer. The performance and efficiency of the equalizer are investigated by applying it to various practical short-reach fiber-optic transmission system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion. The second approach is devoted for blindly combating impairments of long-haul fiber-optic systems and networks. A novel adjoint sensitivity analysis (ASA) approach for the nonlinear Schrödinger equation (NLSE) is proposed. The NLSE describes the light-wave propagation in optical fiber communication systems. The proposed ASA approach significantly accelerates the sensitivity calculations in any fiber-optic design problem. Using only one extra adjoint system simulation, all the sensitivities of a general objective function with respect to all fiber design parameters are estimated. We provide a full description of the solution to the derived adjoint problem. The accuracy and efficiency of our proposed algorithm are investigated through a comparison with the accurate but computationally expensive central finite-differences (CFD) approach. Numerical simulation results show that the proposed ASA algorithm has the same accuracy as the CFD approach but with a much lower computational cost. Moreover, we propose an efficient, robust, and accelerated adaptive digital back propagation (A-DBP) method based on adjoint optimization technique. Provided that the total transmission distance is known, the proposed A-DBP algorithm blindly compensates for the linear and nonlinear distortions of point-to-point long-reach optical fiber transmission systems or multi-point optical fiber transmission networks, without knowing the launch power and channel parameters. The NLSE-based ASA approach is extended for the sensitivity analysis of general multi-span DBP model. A modified split-step Fourier scheme method is introduced to solve the adjoint problem, and a complete analysis of its computational complexity is studied. An adjoint-based optimization (ABO) technique is introduced to significantly accelerate the parameters extraction of the A-DBP. The ABO algorithm utilizes a sequential quadratic programming (SQP) technique coupled with the extended ASA algorithm to rapidly solve the A-DBP training problem and optimize the design parameters using minimum overhead of extra system simulations. Regardless of the number of A-DBP design parameters, the derivatives of the training objective function with respect to all parameters are estimated using only one extra adjoint system simulation per optimization iterate. This is contrasted with the traditional finite-difference (FD)-based optimization methods whose sensitivity analysis calculations cost per iterate scales linearly with the number of parameters. The robustness, performance, and efficiency of the proposed A-DBP algorithm are demonstrated through applying it to mitigate the distortions of a 4-span optical fiber communication system scenario. Our results show that the proposed A-DBP achieves the optimal compensation performance obtained using an ideal fine-mesh DBP scheme utilizing the correct channel parameters. Compared to A-DBPs trained using SQP algorithms based on forward, backward, and central FD approaches, the proposed ABO algorithm trains the A-DBP with 2.02 times faster than the backward/forward FD-based optimizers, and with 3.63 times faster than the more accurate CFD-based optimizer. The achieved gain further increases as the number of design parameters increases. A coarse-mesh A-DBP with less number of spans is also adopted to significantly reduce the computational complexity, achieving compensation performance higher than that obtained using the coarse-mesh DBP with full number of spans. / Thesis / Doctor of Philosophy (PhD) / This thesis proposes two powerful and computationally efficient digital signal processing (DSP)-based techniques, namely, artificial neural network nonlinear feed forward equalizer (ANN-NFFE) and adaptive digital back propagation (A-DBP) equalizer, for mitigating the induced distortions in short-reach and long-haul fiber-optic communication systems, respectively. The ANN-NFFE combats nonlinear impairments of direct-detected short-haul optical fiber communication systems, achieving compensation performance comparable to the benchmark performance obtained using maximum-likelihood sequence estimator with much lower computational cost. A novel adjoint sensitivity analysis (ASA) approach is proposed to significantly accelerate sensitivity analyses of fiber-optic design problems. The A-DBP exploits a gradient-based optimization method coupled with the ASA algorithm to blindly compensate for the distortions of coherent-detected fiber-optic communication systems and networks, utilizing the minimum possible overhead of performed system simulations. The robustness and efficiency of the proposed equalizers are demonstrated using numerical simulations of varied examples extracted from practical optical fiber communication systems scenarios.
67

On the Eigenvalues of the Manakov System

Keister, Adrian Clark 13 July 2007 (has links)
We clear up two issues regarding the eigenvalue problem for the Manakov system; these problems relate directly to the existence of the soliton [sic] effect in fiber optic cables. The first issue is a bound on the eigenvalues of the Manakov system: if the parameter ξ is an eigenvalue, then it must lie in a certain region in the complex plane. The second issue has to do with a chirped Manakov system. We show that if a system is chirped too much, the soliton effect disappears. While this has been known for some time experimentally, there has not yet been a theoretical result along these lines for the Manakov system. / Ph. D.
68

L'instabilité modulationnelle en présence de vent et d'un courant cisaillé uniforme

Thomas, Roland 21 March 2012 (has links)
Cette thèse étudie l'influence du vent sur l'instabilité modulationnelle. Une première partie unifie les travaux de Segur et al. qui intègrent la dissipation et ceux de Leblanc qui prennent en compte le vent. Une équation non linéaire de Schrödinger est établie avec un terme additionnel linéaire résultant de la compétition entre le vent et la dissipation. La dissipation est traduite par le modèle de Lundgren et l'effet du vent se manifeste par l'intermédiaire de la pression atmosphérique selon le modèle de Miles. La profondeur est finie. Une étude de stabilité de l'onde de Stokes est détaillée, et des simulations numériques sont menées pour illustrer les résultats. Des expérimentations sont menées pour apporter une validation qualitative à ces travaux. Cette première partie a été validée par une publication au Journal of Fluid Mechanics (2010). La deuxième partie étudie l'influence du vent sur l'instabilité modulationnelle par l'intermédiaire de la vorticité qu'il crée en surface. Le modèle est simplifié par l'hypothèse d'un écoulement unidirectionnel et d'une vorticité constante. La profondeur est encore supposée finie. Une équation non linéaire de Schrödinger est établie, qui prend en compte cette vorticité constante. La stabilité de l'onde de Stokes est alors étudiée en détail(diagramme d'instabilité en fonction de la vorticité et de la profondeur, bande d'instabilité, taux d'instabilité, etc.). Il est démontré qu'une vorticité négative, au delà d'un certain seuil, supprime l'instabilité modulationnelle indépendamment de la profondeur. Cette deuxième partie a été soumise pour publication au journal Physics of Fluids. / This thesis manuscript treats about the influence of wind on modulational instability. A first part merges the works of Segur at al. which take into account viscous dissipation and Leblanc's work which deals with wind. A nonlinear Schrödinger equation is derived, with a forcing linear term which represents the result of the balance between wind forcing and dissipation. Visous dissipation is represented by Lundgren's model and the effect of wind is integrated into atmospheric pressure following Miles' model. Depth is finite. The stability of Stokes's waves is investigated, and numerical simulations are presented to illustrate the results. Some experimentations are done to confirm qualitatively these works. This first part was validated by a publication in the Journal of Fluid Mechanics~(2010). The second part studies the influence of the wind on the modulational instability by the intermediary of the vorticity whom it creates on the water at the surface. The model is simplified by the hypothesis of an unidirectional flow and a constant vorticity. The depth is still supposed finite. A non linear Schrödinger equation is derived, which takes into account this constant vorticity. The stability of the Stokes' wave is studied then in detail (instability diagram function of vorticity and depth, instability bandwidth, instability rate, etc.). It is demonstrated that a negative vorticity, beyond a certain threshold, eliminates the modulational instability independently of the depth. This second part has been submitted for publication in the journal Physics of Fluids.
69

Explosion des solutions de Schrödinger de masse critique sur une variété riemannienne / Blow-up solutions for the 2-dimensional critical Schrödinger equation on a riemannian manifold

Boulenger, Thomas 12 November 2012 (has links)
Ce travail cherche a comprendre comment l'ajout d'une géométrie non euclidienne dans un problème de Schrödinger non linéaire influe sur l'existence et l'unicité des solutions explosives de masse critique. On s'inspire pour beaucoup des travaux de Merle et Raphaël sur la méthode de modulation des paramètres d'invariance géométrique pour une EDP qui possède de bonnes lois de conservations. On s'appuie ici plus particulièrement sur un article de Raphaël et Szeftel qui prouve l'existence et l'unicité d'une solution de masse critique en dimension 2 pour l'équation de Schrödinger non linéaire avec potentiel d'inhomogénéité devant la non-linéarité, et qui explose par ailleurs au maximum de l'inhomogénéité. Dans un premier temps, il s'agit de reprendre la méthode dans son ensemble afin de l'adapter à des cas où le Laplacien n'est plus plat, et est remplacé par un opérateur de type Laplace-Beltrami ou Laplacien généralisé. Ayant mis en avant le rôle de la courbure au point d'explosion, en termes de conditions sur les dérivées de termes métriques, on reprend dans un deuxième temps l'étude dans le cas plus général d'une variété riemannienne. Grâce à un ansatz sur la solution qui intègre maintenant la transformation induite par la métrique, on est capable d'énoncer un résultat d'existence et d'unicité en termes de conditions géométriques sur la variété elle même. Par soucis de simplicité, on se limite néanmoins au rôle local de la métrique, en la supposant globalement définie dans une certaine carte, et asymptotiquement équivalente a la métrique euclidienne. / The present work aims at investigating the effects of a non-euclidean geometry on existence and uniqueness results for critical blow up NLS solutions. We will use many ideas from the works of Merle and Raphaël, particularly ideas from modulation theory which describes a solution in terms of geometric invariants parameters. We will rely more specically on a paper from Raphaël and Szeftel for existence and uniqueness of a critical mass blow up solution in dimension two tothe nonlinear Schrödinger equation with inhomogeneous potential acting on the nonlinearity, and which blows up where the inhomogeneity reaches its maximum. At first, we consider a generalized Laplacian operator and deploy the classical ansatz method to point out difficulties inherited from the non-flat metric terms, and in particular the key role played by the curvature at the blow-up point. In a second part, we reproduce the method when modifying the geometrical ansatz on which the parametrix is constructed, and investigate more precisely what is needed for existence and then uniqueness when dealing with a Laplace-Beltrami operator associated to a riemannian manifold. For simplicity, we shall only consider the role of g locally around the blow up point we are constructing, by assuming g is globally defined in some map, and asymptotically equals the usual euclidean metric.
70

Estabilidade de ground state para a equação de Schrödinger logarítmica com potenciais do tipo delta / Stability of the ground states for a logarithmic Schrödinger equation with delta-type potentials

Hernandez Ardila, Alex Javier 16 May 2016 (has links)
Na primeira parte do trabalho estudamos a equação de Schrödinger logarítmica com um delta potencial; $V(x)=-\\gamma \\,\\delta(x)$, onde $\\delta$ é a distribuição de Dirac na origem e o parâmetro real $\\gamma$ descreve a intensidade do potencial. Estabelecemos a existência e unicidade das soluções do problema de Cauchy associado em um espaço de funções adequado. No caso do potencial atrativo ($\\gamma>0$), calculamos de forma explícita o seu único ground state e mostramos a sua estabilidade orbital.\\\\ A segunda parte trata detalhadamente da equação de Schrödinger logarítmica com um delta derivada potencial; $V(x)=-\\gamma\\, \\delta^{\\prime}(x)$. A boa colocação global para o problema de Cauchy é verificada em um espaço de funções adequado. No caso do potencial atrativo ($\\gamma>0$), o conjunto dos ground states é completamente determinado. Mais precisamente: se $0<\\gamma\\leq2$, então há um único ground state e é uma função ímpar; se $\\gamma>2$, então existem dois ground states não-simétricos. Em adição, provamos que cada ground state é orbitalmente estável através de uma abordagem variacional. Finalmente, usando a teoria de extensão de operadores simétricos, também mostramos um resultado de instabilidade para $\\gamma>2$. / The first part of this thesis deals with the logarithmic Schrödinger equation with a delta potential; $V(x)=-\\gamma \\,\\delta(x)$, where $\\delta$ is the Dirac distribution at the origin and the real parameter $\\gamma$ is interpreted as the strength of the potential. We establish the existence and uniqueness of the solutions of the associated Cauchy problem in a suitable functional framework. In the attractive potential case ($\\gamma>0$), we explicitly compute the unique ground state and we show their orbital stability .\\\\ The second part deals with the case of the logarithmic Schrödinger equation with a delta prime potential; $V(x)=-\\gamma\\, \\delta^{\\prime}(x)$. Global well-posedness is verified for the Cauchy problem in a suitable functional space. In the attractive potential case ($\\gamma>0$), the set of the ground state is completely determined. More precisely: if $0<\\gamma\\leq2$, then there is a single ground state and it is an odd function; if $\\gamma>2$, then there exist two non-symmetric ground states. Moreover, we show that every ground state is orbitally stable via a variational approach. Finally, by applying the theory of extensions of symetric operators, we also prove a result of instability for $\\gamma>2$.

Page generated in 0.1408 seconds