101 |
Um estudo sobre a boa colocação local da equação não linear de Schrödinger cúbica unidimensional em espaços de Sobolev periódicos / A study about the locally well posed of cubic nonlinear Schrödinger equation in periodic Sobolev spacesRomão, Darliton Cezario 25 March 2009 (has links)
In this work we study, in details, the Cauchy problem of the nonlinear Schrödinger equation, with initial datas in periodic Sobolev spaces. Specifically, we prove that this problem is locally well posed for datas in Hsper, with s ≥ 0. Particularly, for initial datas in L2 the problem is globally well posed, due to the conservation law of the equation in this space. Moreover, we prove the this result is the best one, seeing we expose examples that show that the equation flow is not locally uniformly continuous for initial datas with regularity less than L2. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, fazemos um estudo detalhado do problema de Cauchy para a equação não-linear cúbica de Schrödinger, com dados iniciais em espaços de Sobolev no toro. Especificamente, provaremos que este modelo é localmente bem posto para dados em Hsper, com s ≥ 0. Em particular, para dados iniciais em L2 o modelo é globalmente bem posto, devido à lei de conservação da equação neste espaço. Além disso, provaremos que os resultados obtidos são os melhores possíveis, visto que exibiremos exemplos que mostram que o fluxo da equação não é localmente uniformemente contínuo para dados iniciais com regularidade menor que L2.
|
102 |
Soluções nodais para problemas elípticos semilineares com crescimento crítico exponencialPereira, Denilson da Silva 05 December 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1236830 bytes, checksum: ba028274cff1ac1fffc16c7d6e148a98 (MD5)
Previous issue date: 2014-12-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study existence, non-existence and multiplicity results of nodal solutions for the nonlinear Schrödinger equation (P) -u + V (x)u = f(u) in ; where
is a smooth domain in R2 which is not necessarily bounded, f is a continuous function which has exponential critical growth and V is a continuous and nonnegative
potential. In the first part, we prove the existence of least energy nodal solution in both cases, bounded and unbounded domain. Moreover, we also prove a nonexistence
result of least energy nodal solution for the autonomous case in whole R2. In the second part, we establish multiplicity of multi-bump type nodal solutions. Finally, for
V - 0, we prove a result of infinitely many nodal solutions on a ball. The main tools used are Variational methods, Lions's Lemma, Penalization methods and a process of
anti-symmetric continuation. / Neste trabalho, estudamos resultados de existência, não existência e multiplicidade de soluções nodais para a equação de Schrödinger não-linear
(P) -u + V (x)u = f(u) em ;onde é um domínio suave em R2 não necessariamente limitado, f é uma função que possui crescimento crítico exponencial e V é um potencial contínuo e não-negativo. Na primeira parte, mostramos a existência de soluções nodais de energia mínima em ambos os casos, domínio limitado e ilimitado. Mostramos ainda um resultado de não existência de solução nodal de energia mínima para o caso autônomo em todo o R2. Na segunda parte, estabelecemos a multiplicidade de soluções do tipo multi-bump nodal. Finalmente, para V - 0, mostramos um resultado de existência de infinitas soluções nodais em uma bola. As principais ferramentas utilizadas são Métodos Variacionais, Lema de Deformação, Lema de Lions, Método de penalização e um processo de continuação anti-simétrica.
|
103 |
Método compacto de diferenças finitas para resolver equações de Schrödinger não lineares com dispersão de quarta ordem / Compact finite Diference method to solve nonlinear Schrödinger equations with fourth order dispersionJesus, Hugo Naves 16 September 2016 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2016-11-10T11:15:34Z
No. of bitstreams: 2
Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-11-10T17:47:53Z (GMT) No. of bitstreams: 2
Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-11-10T17:47:53Z (GMT). No. of bitstreams: 2
Dissertação - Hugo Naves de Jesus - 2016.pdf: 1851851 bytes, checksum: 71cb8f26f4f38eb5f89d99aafc926b66 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-09-16 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Finite difference schemes belong to a class of numerical methods used to approximate derivatives. They are widely used to find approximations to differential equations. There are a lot of numerical methods, whose deductions are made through expansions in Taylor Series. Depending on the manner in which expansion is made, it can be combined with other expansions to obtain derivatives with better numerical approximations. Usually when we get numerical derivative with better approaches, it is necessary to increase the amount of points used in the grid. An alternative to this problem are compact methods, which achieve better approximations for the same derivative but without increasing the number of mesh points. This work is an attempt to develop the Compact-SSFD method for the Schrödinger Equation Nonlinear Fourth Order. SSFD methods are used to separate the parts of a differential equation so that each part can be solved separately. For example in the case of non-linear differential equations it is often used to separate the linear parts of nonlinear parts. In Compact-SSFD methods nonlinear parts are resolved exactly as the linear are resolved using compact methods. Our work is inspired in the Dehghan and Taleei’s work where was used the Compact-SSFD method for solving numerically the equation Nonlinear Schrödinger. Before we try to develop our method, the results of the authors was correctly reproduced. But when we try to deduce a method analogous to the differential equation we wanted to solve, which also involves derived from fourth order, we realized that a Compact type method does not get as trivially as in the case of used to approach second-order derivatives. / Métodos de diferenças finitas pertencem a uma classe de métodos numéricos usados para se aproximar derivadas. Eles são amplamente usados para encontrar-se soluções numéricas para equações diferenciais. Há uma grande quantidade de métodos numéricos, cuja as deduções são feitas através de expansões em séries de Taylor. Dependendo da forma em que uma expansão é feita, ela pode ser combinada com outras expansões para obter-se derivadas numéricas com melhores aproximações. Geralmente quando obtemos derivadas numéricas com aproximações melhores, é necessário aumentar-se a quantidade de pontos usados no domínio discretizado. Uma alternativa a este problema são os chamados métodos compact, que obtêm melhores aproximações para a mesma derivada mas sem precisar aumentar a quantidade de pontos da malha. Este trabalho é uma tentativa de desenvolver-se um método Compact-SSFD para a Equação de Schrödinger Não Linear de Quarta Ordem. Métodos SSFD são usados para separar-se as partes de uma equação diferencial tal que cada parte possa ser resolvida separadamente. Por exemplo no caso de equações diferenciais não lineares ele é bastante usado para separar-se as partes lineares das partes não lineares. Nos métodos Compact-SSFD as partes não lineares são resolvidas exatamente enquanto as lineares são resolvidas usando-se métodos compact. Nos baseamos no trabalho de Dehghan e Taleei onde foi usado o Método Compact-SSFD para resolver-se numericamente a Equação de Schrödinger Não Linear. Antes de tentarmos desenvolver nosso método, reproduzimos corretamente os resultados dos autores. Mas ao tentarmos deduzir um método análogo para a equação diferencial que queríamos resolver, que envolve também derivadas de quarta ordem, percebemos que um método do tipo Compact não se obtêm tão trivialmente como no caso dos usados para aproximar-se derivadas de segunda ordem.
|
104 |
Sobre uma classe de sistemas elípticos hamiltonianos / On a class of hamiltonian elliptic systemsCardoso, José Anderson Valença, 1980- 19 August 2018 (has links)
Orientador: Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:33:51Z (GMT). No. of bitstreams: 1
Cardoso_JoseAndersonValenca_D.pdf: 1655484 bytes, checksum: 6e4f6872240f3317db759e94789f5d34 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho consideramos uma classe de Sistemas Elípticos Hamiltonianos. Esta classe de sistemas surge como modelo natural em áreas como Física e Biologia. Estudamos casos que envolvem crescimento crítico, arbitrário e crítico perturbado e analisamos questões relacionadas a existência, multiplicidade e propriedades de soluções. Os resultados são obtidos com o uso de métodos variacionais, a exemplo dos teoremas de min-max, aliados as propriedades das funções com simetria radial e ao princípio de concentração de compacidade / Abstract: In this work, we consider a class of Hamiltonian Elliptic Systems. This class of systems arise as a natural model in many areas such as Physics and Biology. We studied cases involving critical growth, arbitrary growth and perturbed critical growth and we also investigated questions related to the existence, multiplicity and properties of solutions. The results are obtained by using a variational approach, for instance, min-max theorems, combined with properties of radially symmetric functions and the concentration-compactness principle / Doutorado / Matematica / Doutor em Matemática
|
105 |
Ondes scélérates complexes dans les fibres optiques / Complex rogue wave in the fiber opticsFrisquet, Benoit 24 March 2016 (has links)
Ce manuscrit de thèse présente l’étude d’instabilités non-linéaires et la génération d’ondes scélérates complexes liées à la propagation de la lumière dans des fibres optiques standards des télécommunications optiques. Un rappel est tout d’abord présenté sur les phénomènes physiques linéaires et non-linéaires impliqués et qui peuvent présenter une analogie directe avec le domaine de l’hydrodynamique. Les différentes formes d’ondes scélérates liées au processus d’instabilité de modulation, aussi appelées « breathers », sont alors présentées, elles sont obtenues par la résolution de l’équation de Schrödinger non-linéaire. À partir de ces solutions exactes, divers systèmes expérimentaux sont alors conçus par simulation numérique à partir de deux méthodes d’excitation d’ondes scélérates. La première est une génération exacte à partir des solutions analytiques en effectuant une mise en forme spectrale en intensité et en phase d’un peigne de fréquence optique. La seconde méthode est basée sur des conditions initiales approchées avec des ondes continues modulées sinusoïdalement. Les mesures expérimentales réalisées avec ces deux méthodes démontrent parfaitement la génération d’ondes scélérates complexes (solutions d’ordre supérieur du système) issues de la superposition non-linéaire ou collisions de « breathers » de premier ordre. Enfin, nous avons également étudié un système non-linéaire équivalent au modèle de Manakov, qui fait intervenir la propagation de deux ondes distinctes avec des polarisations orthogonales dans une fibre optique. L’analyse de stabilité et des simulations numériques de ce système multi-variable mettent en évidence un nouveau régime d’instabilité de modulation vectorielle ainsi que de nouvelles solutions d’ondes scélérates noires et couplées en polarisation. Un nouveau système expérimental mis en place a permis de confirmer ces prédictions théoriques avec un excellent accord quantitatif. / This manuscript presents the generation of complex rogue waves related to nonlinear instabilities occurring through the propagation of light in standard optical fibers. Linear and nonlinear physical phenomena involved are first listed, in particular some of them by analogy with the field of hydrodynamics. The different forms of rogue waves induced by the modulation instability process are then presented. They are also known as "breathers", and they are obtained by solving the nonlinear Schrödinger equation. From these exact solutions, various experimental systems were designed by means of numerical simulations based on two rogue-wave excitation methods. The first one is an exact generation of mathematical solutions based on the spectral shaping of an optical frequency comb. The second method uses approximate initial conditions with a simple sinusoidal modulation of continuous waves. For both cases, experimental measurements demonstrate the generation of complex rogue waves (i.e., higher-order solutions of the system) arising from the nonlinear superposition or collision of first-order breathers. Finally, we also studied a nonlinear fiber system equivalent to the Manakov model, which involves the propagation of two distinct waves with orthogonal polarizations. The stability analysis and numerical simulations of this multi-component system highlight a novel regime of vector modulation instability and the existence of coupled dark rogue-wave solutions. A new experimental system setup was conceived and theoretical predictions are confirmed with an excellent quantitative agreement.
|
106 |
Linear and Nonlinear Rogue Waves in Optical Systems / Vagues scélérates linéaire et non-linéaire dans les systèmes optiquesToenger, Shanti 27 June 2016 (has links)
Ces travaux de thèse présentent l’étude des différentes classes d’effets linéaires et non-linéaires en optiquequi génèrent des événements extrêmes dont les propriétés sont analogues à celles des « vagues scélérates » destructrices qui apparaissent à la surface des océans. La thèse commence avec un bref aperçu de l’analogie physique entre la localisation d’onde dans les systèmes hydrodynamique et les systèmes optique, pour lesquels nous décrivons les mécanismes de génération de vagues scélérates linéaire et non-linéaire. Nous présentons ensuite quelques résultats numérique et expérimentaux de la génération de vagues scélérates dans un système optique linéaire dans le cas d’une propagation spatiale d’un champ optique qui présenteune phase aléatoire, où nous interprétons les résultats obtenus en terme de caustiques optiques localisées.Nous considérons ensuite les vagues scélérates obtenues dans des systèmes non-linéaires qui présentent une instabilité de modulation décrite par l’équation de Schrödinger non-linéaire (ESNL). Nous présentons une étude numérique détaillée comparant les caractéristiques spatio-temporelles des structures localisées obtenues dans les simulation numérique avec les différentes solutions analytiques obtenues à partir de l’ESNL.Deux études expérimentales d’instabilités de modulation sont ensuite effectuées. Dans la première, nous présentons des résultats expérimentaux qui étudient les propriétés d’instabilité de modulation en utilisant un système d’agrandissement temporel par lentille temporelle; dans la deuxième, nous rapportons des résultats expérimentaux sur les propriétés des instabilités de modulation dans le domaine fréquentiel en utilisant une technique de mesure spectrale en temps-réel. Cette dernière étude examine l’effet sur la bande spectrale et surla stabilité d’un faible champ perturbateur. Tous les résultats expérimentaux sont comparés avec la simulation d’ESNL et abordés en termes des propriétés qualitatives d’instabilité de modulation. Dans toutes ces études,différentes propriétés statistiques sont analysées en rapport avec l’apparition des vagues scélérates. / This thesis describes the study of several different classes of linear and nonlinear effects in optics that generatelarge amplitude extreme events with properties analogous to the destructive “rogue waves” on the surface of theocean. The thesis begins with a brief overview of the analogous physics of wave localisation in hydrodynamicand optical systems, where we describe linear and nonlinear rogue wave generating mechanisms in bothcases. We then present numerical and experimental results for rogue wave generation in a linear opticalsystem consisting of free space propagation of a spatial optical field with random phase. Computed statisticsbetween experiment and modelling are in good agreement, and we interpret the results obtained in termsof the properties of localised optical caustics. We then consider rogue waves in the nonlinear system ofmodulation instability described by the Nonlinear Schrodinger Equation (NLSE), and a detailed numericalstudy is presented comparing the spatio-temporal characteristics of localised structures seen from numericalsimulations with different known analytic solutions to the NLSE. Two experimental studies of modulationinstability are then reported. In the first, we present experimental results studying the properties of modulationinstability using a time-lens magnifier system; in the second, we report experimental results studying thefrequency-domain properties of modulation instability using real-time spectral measurements. The latter studyexamines the effect of a weak seed field on spectral bandwidth and stability. All experimental results arecompared with the NLSE simulations and discussed in terms of the qualitative properties of modulationinstability, in order to gain new insights into the complex dynamics associated with nonlinear pulse propagation.In all of these studies, different statistical properties are analised in relation to the emergence of rogue waves.
|
107 |
Modélisation et analyse de systèmes d'équations de Schrödinger non linéaires / Modeling and analysis of systems of nonlinear Schrödinger equationsDestyl, Edes 28 September 2018 (has links)
Les travaux de cette thèse portent sur la modélisation et l’étude numérique dessystèmes couplés de deux équations de Schrödinger non linéaires. Dans un premiertemps, nous considérons un système de deux équations de Schrödinger non linéairesPT −symétrique qui modélise des phénomèmes de fibre optique biréfringent. Lecomportement de la solution est étudié dans certains espaces comme l’espace de SobolevH1. De plus, l’étude numérique du modèle est faite afin de valider les résultatsanalytiques et, montre clairement le comportement qualitatif de la solution dansles espaces choisis. Pour ce même modèle en dimension supérieure, des conditionssuffisantes sont établies pour que la solution explose en temps fini pour certainesnon linéarités et pour le cas général de la non linéarité focalisante, nous faisonsl’étude numérique du modéle et nous présentons certains cas d’explosion de la solutionen temps fini et aussi des solutions du modèle qui existent tout le temps.D’autre part, nous adressons un nouveau modèle d’équations discrètes de Schrödingernon linéaires PT -symétrique. Un tel modèle décrit la dynamique d’une chaînede pendules faiblement couplés près d’une résonance entre une force paramétriqueet la fréquence linéaire des pendules. En vue d’étudier la stabilité des pendules, desconditions suffisantes ont été établies sur les paramètres du modèle pour que la solutiond’équilibre zéro soit linéairement et non linéairement stable. Des expériencesnumériques sont présentées pour valider les résultats analytiques et pour caractériserla déstabilisation de la chaîne de pendules couplés dans la région d’instabilité. / The works of this thesis concern the modeling and the numerical study of thesystems of two coupled nonlinear Schrödinger equations. At first, we considered aparity-time-symmetric system of the two coupled nonlinear Schrödinger (NLS) equationsthat modeled phenomenons in birefringent nonlinear optical fiber. We studythe behavior of the solution in some spaces like the Sobolev space H1. And we studythe numerical aspect of the model which clearly shows the behavior of the solutionin the chosen space. For the same model in higher dimension, we establish sufficientconditions for the initial conditions to blow up in finite time for some nonlinearityand for others we do the numerical study of the model and we present some casesof blowing up of the solution in finite time and also of the solutions of the modelthat exist all the time. On the other hand, we address a new model of discrete nonlinearSchrödinger equations PT -symmetric. A such model describes dynamics inthe chain of weakly coupled pendula pairs near the resonance between the parametricallydriven force and the linear frequency of each pendulum. In order to studythe stability of the pendulums, we establish sufficient conditions on the parametersof the model so that the equilibrium solution is stable. Numerical experiments arepresented to validate the analytical results and to characterize the unstabilizationof the coupled pendulum chain in the region of instability.
|
108 |
Quantum Dissipative Dynamics and Decoherence of Dimers on Helium DropletsSchlesinger, Martin 16 December 2011 (has links)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research.
Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets.
The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail.
The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden.
Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet.
Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen.
Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht.
Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
|
109 |
Refinements of the Solution Theory for Singular SPDEsMartin, Jörg 14 August 2018 (has links)
Diese Dissertation widmet sich der Untersuchung singulärer stochastischer partieller Differentialgleichungen (engl. SPDEs). Wir entwickeln Erweiterungen der bisherigen Lösungstheorien, zeigen fundamentale Beziehungen zwischen verschiedenen Ansätzen und
präsentieren Anwendungen in der Finanzmathematik und der mathematischen Physik.
Die Theorie parakontrollierter Systeme wird für diskrete Räume formuliert und eine schwache Universalität für das parabolische Anderson Modell bewiesen.
Eine fundamentale Relation zwischen Hairer's modellierten Distributionen und Paraprodukten wird bewiesen: Wir zeigen das sich der Raum modellierter Distributionen durch Paraprodukte beschreiben lässt. Dieses Resultat verallgemeinert die Fourierbeschreibung von Hölderräumen mittels Littlewood-Paley Theorie.
Schließlich wird die Existenz von Lösungen der stochastischen Schrödingergleichung auf dem ganzen Raum bewiesen und eine Anwendung Hairer's Theorie zur Preisermittlung von Optionen aufgezeigt. / This thesis is concerned with the study of singular stochastic partial differential equations
(SPDEs). We develop extensions to existing solution theories, present fundamental interconnections between different approaches and give applications in financial mathematics
and mathematical physics.
The theory of paracontrolled distribution is formulated for discrete systems, which allows us to prove a weak universality result for the parabolic Anderson model.
This thesis further shows a fundamental relation between Hairer's modelled distributions and paraproducts: The space of modelled distributions can be characterized completely by using paraproducts. This can be seen a generalization of the Fourier description of Hölder spaces.
Finally, we prove the existence of solutions to the stochastic Schrödinger equation on the full space and provide an application of Hairer's theory to option pricing.
|
110 |
Magnus-based geometric integrators for dynamical systems with time-dependent potentialsKopylov, Nikita 27 March 2019 (has links)
[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial.
La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo.
El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis.
El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo.
La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético.
En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock.
El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente.
El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura. / [CA] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest.
L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps.
El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi.
El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps.
L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic.
En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock.
El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent.
El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura. / [EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics.
The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass.
Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced.
The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations.
The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field.
In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq.
Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass.
The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined. / Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798
|
Page generated in 0.1738 seconds