• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellunabhängige Bewertung von Optionen mithilfe des optimalen Transports

Schleu, Florian 23 November 2017 (has links)
Die vorliegende Arbeit beschäftigt sich mit der modellunabhängigen Bewertung von Optionen. In einem ersten Ansatz wird eine modellunabhängige Version des fundamentalen Theorems der Optionspreistheorie aufgestellt. Eine Folgerung ist das Superreplikation Theorem, welches eine obere Preisschranke einer Option durch superreplizieren einer semistatischen Strategie liefert. Zur Vorbereitung des zweiten Ansatzes wird eine Einführung in den optimalen Transport gegeben, speziell wird das Dualitätstheorem aufgestellt. Dieser Ansatz beschreibt eine obere Preisschranke, in dem das Dualitätstheorem als Superreplikation Resultat interpretiert wird. Auch hier wird die Option durch eine semistatische Strategie repliziert. / This thesis considers model-independent option pricing. The first approach establishes a model-independent version of the Fundamental Theorem Of Asset Pricing. A corollary is the Superreplication Theorem, which provides an upper bound of a price of an option in superreplicating a semi-static strategy. In preparation of the second approach an introduction in Optimal Transport is discussed. In particular, the Duality Theorem is given. This approach characterizes an upper bound of the price in interpreting it as a Superreplication Result. The option is replicated by an semi-static strategy as well.
2

Numerical treatment of the Black-Scholes variational inequality in computational finance

Mautner, Karin 16 February 2007 (has links)
In der Finanzmathematik hat der Besitzer einer amerikanische Option das Recht aber nicht die Pflicht, eine Aktie innerhalb eines bestimmten Zeitraums, für einen bestimmten Preis zu kaufen oder zu verkaufen. Die Bewertung einer amerikanische Option wird als so genanntes optimale stopping Problem formuliert. Erfolgt die Modellierung des Aktienkurses durch eine geometrische Brownsche Bewegung, wird der Wert einer amerikanischen Option durch ein deterministisches freies Randwertproblem (FRWP), oder einer äquivalenten Variationsungleichung (VU) auf ganz R in gewichteten Sobolev Räumen gegeben. Um Standardmethoden der Numerischen Mathematik anzuwenden, wird das unbeschränkte Gebiet zu einem beschränkten Gebiet abgeschnitten. Mit Hilfe der Fourier-Transformation wird eine Integraldarstellung der Lösung die den freien Rand explizit beinhaltet, hergeleitet. Mittels dieser Integraldarstellung werden Abschneidefehlerschranken bewiesen. Danach werden gewichtete Poincare Ungleichungen mit expliziten Konstanten bewiesen. Der Abschneidefehler und die gewichtete Poincare Ungleichung ermöglichen, einen zuverlässigen a posteriori Fehlerschätzer zwischen der exakten Lösung der VU und der semidiskreten Lösung des penalisierten Problems auf R herzuleiten. Eine hinreichend glatte Lösung der VU garantiert die Konvergenz der Lösung des penaltisierten Problems zur Lösung der VU. Ein a priori Fehlerschätzer für den Fehler zwischen der exakten Lösung der VU und der semidiskreten Lösung des penaltisierten Problems beendet die numerische Analysis. Die eingeführten aposteriori Fehlerschätzer motivieren einen Algorithmus für adaptive Netzverfeinerung. Numerische Experimente zeigen die verbesserte Konvergenz des adaptiven Verfahrens gegenüber der uniformen Verfeinerung. Der zuverlässige a posteriori Fehlerschätzer ermöglicht es, den Abschneidepunkt so zu wählen, dass der Gesamtfehler (Diskretisierungsfehler plus Abschneidefehler) kleiner als eine gegebenen Toleranz ist. / Among the central concerns in mathematical finance is the evaluation of American options. An American option gives the holder the right but not the obligation to buy or sell a certain financial asset within a certain time-frame, for a certain strike price. The valuation of American options is formulated as an optimal stopping problem. If the stock price is modelled by a geometric Brownian motion, the value of an American option is given by a deterministic parabolic free boundary value problem (FBVP) or equivalently a non-symmetric variational inequality (VI) on weighted Sobolev spaces on R. To apply standard numerical methods, the unbounded domain R is truncated to a bounded one. Applying the Fourier transform to the FBVP yields an integral representation of the solution including the free boundary explicitely. This integral representation allows to prove explicit truncation errors. Since the VI is formulated within the framework of weighted Sobolev spaces, we establish a weighted Poincare inequality with explicit determined constants. The truncation error estimate and the weighted Poncare inequality enable a reliable a posteriori error estimate between the exact solution of the VI and the semi-discrete solution of the penalised problem on R. A sufficient regular solution provides the convergence of the solution of the penalised problem to the solution of the VI. An a priori error estimate for the error between the exact solution of the VI and the semi-discrete solution of the penalised problem concludes the numerical analysis. The established a posteriori error estimates motivates an algorithm for adaptive mesh refinement. Numerical experiments show the improved convergence of the adaptive algorithm compared to uniform mesh refinement. The reliable a posteriori error estimate including explicit truncation errors allows to determine a truncation point such that the total error (discretisation and truncation error) is below a given error tolerance.
3

American options in incomplete markets

Aguilar, Erick Trevino 25 July 2008 (has links)
In dieser Dissertation werden Amerikanischen Optionen in einem unvollst¨andigen Markt und in stetiger Zeit untersucht. Die Dissertation besteht aus zwei Teilen. Im ersten Teil untersuchen wir ein stochastisches Optimierungsproblem, in dem ein konvexes robustes Verlustfunktional ueber einer Menge von stochastichen Integralen minimiert wird. Dies Problem tritt auf, wenn der Verkaeufer einer Amerikanischen Option sein Ausfallsrisiko kontrollieren will, indem er eine Strategie der partiellen Absicherung benutzt. Hier quantifizieren wir das Ausfallsrisiko durch ein robustes Verlustfunktional, welches durch die Erweiterung der klassischen Theorie des erwarteten Nutzens durch Gilboa und Schmeidler motiviert ist. In einem allgemeinen Semimartingal-Modell beweisen wir die Existenz einer optimalen Strategie. Unter zusaetzlichen Kompaktheitsannahmen zeigen wir, wie das robuste Problem auf ein nicht-robustes Optimierungsproblem bezueglich einer unguenstigsten Wahrscheinlichkeitsverteilung reduziert werden kann. Im zweiten Teil untersuchen wir die obere und die untere Snellsche Einhuellende zu einer Amerikanischen Option. Wir konstruieren diese Einhuellenden fuer eine stabile Familie von aequivalenten Wahrscheinlichkeitsmassen; die Familie der aequivalentenMartingalmassen ist dabei der zentrale Spezialfall. Wir formulieren dann zwei Probleme des robusten optimalen Stoppens. Das Stopp-Problem fuer die obere Snellsche Einhuellende ist durch die Kontrolle des Risikos motiviert, welches sich aus der Wahl einer Ausuebungszeit durch den Kaeufer bezieht, wobei das Risiko durch ein kohaerentes Risikomass bemessen wird. Das Stopp-Problem fuer die untere Snellsche Einhuellende wird durch eine auf Gilboa und Schmeidler zurueckgehende robuste Erweiterung der klassischen Nutzentheorie motiviert. Mithilfe von Martingalmethoden zeigen wir, wie sich optimale Loesungen in stetiger Zeit und fuer einen endlichen Horizont konstruieren lassen. / This thesis studies American options in an incomplete financial market and in continuous time. It is composed of two parts. In the first part we study a stochastic optimization problem in which a robust convex loss functional is minimized in a space of stochastic integrals. This problem arises when the seller of an American option aims to control the shortfall risk by using a partial hedge. We quantify the shortfall risk through a robust loss functional motivated by an extension of classical expected utility theory due to Gilboa and Schmeidler. In a general semimartingale model we prove the existence of an optimal strategy. Under additional compactness assumptions we show how the robust problem can be reduced to a non-robust optimization problem with respect to a worst-case probability measure. In the second part, we study the notions of the upper and the lower Snell envelope associated to an American option. We construct the envelopes for stable families of equivalent probability measures, the family of local martingale measures being an important special case. We then formulate two robust optimal stopping problems. The stopping problem related to the upper Snell envelope is motivated by the problem of monitoring the risk associated to the buyer’s choice of an exercise time, where the risk is specified by a coherent risk measure. The stopping problem related to the lower Snell envelope is motivated by a robust extension of classical expected utility theory due to Gilboa and Schmeidler. Using martingale methods we show how to construct optimal solutions in continuous time and for a finite horizon.
4

Cryptocurrency Market: Hedging, Options, and Loans

Liu, Francis 27 August 2024 (has links)
Seit Satoshi Nakamoto Bitcoin (BTC) erschaffen hat, ist der Kryptowährungsmarkt oft im Zentrum von Diskussionen über den Wert von Kryptos. Trotz dieser Debatten bleibt der Markt lebendig, mit aktiven Investoren, die im Handel, der Absicherung, Spekulation, Investition, Verleihen, Ausleihen und der Innovation neuer Mechanismen engagiert sind. Im ersten Kapitel untersuchen wir die Absicherungseffektivität von Bitcoin-Futures gegenüber BTC und anderen Krypto-Expositionen. Angesichts der Volatilität der Kryptopreise könnte die Zuverlässigkeit von Futures zur Absicherung fraglich sein. Wir demonstrieren, dass mit einem auf Kopulae basierenden Hedging-Verhältnis BTCF effektiv gegen BTC für verschiedene Risikopräferenzen, modelliert durch Risikomaße, absichern kann. Im zweiten Kapitel extrahieren wir die im BTC-Markt eingebetteten Jump-Prämien. Die Studie wird durch häufige Preissprünge motiviert. Unsere Analyse zeigt, dass die risikoprämienspezifischen Einblicke in positive und negative Jumps Aufschluss darüber geben, wie der BTC-Optionsmarkt auf größere Ereignisse reagiert; die Prämien besitzen prädiktive Kraft für Renditen von delta-gehedgten Optionen, was mögliche Gewinne aus dem Handel mit Krypto-Optionen erklärt. Die Sprungrisikoprämien sind gute Indikatoren, um die von BTCF implizierten volatilen Carry-Kosten zu erklären. Im dritten Kapitel erforschen wir den Krypto-Kreditmarkt. Dieser teilt Schlüsselmerkmale mit anderen Non-Recourse-Darlehen, z.B. Sicherheitsanforderungen und Verfahren für Margin Calls. Der Markt operiert ohne eine konventionelle Zinsstruktur. Um dies zu ergänzen, schlagen wir eine faire Zinsstruktur vor, indem wir die Krypto-Kreditausleihposition als amerikanische Barrier-Option modellieren. / Since Satoshi Nakamoto created Bitcoin (BTC), the cryptocurrency market has often been at the center of discussions about the value of cryptocurrencies. Despite these debates, the market remains vibrant, with active investors engaged in trading, hedging, speculation, investment, lending, borrowing, and the innovation of new mechanisms. In the first chapter, we examine the hedging effectiveness of Bitcoin futures against BTC and other crypto exposures. Given the volatility of crypto prices, the reliability of futures for hedging might be questionable. We demonstrate that a Copula-based hedging ratio can effectively hedge BTCF against BTC for various risk preferences modeled by risk measures. In the second chapter, we extract the jump premiums embedded in the BTC market. The study is motivated by frequent price jumps. Our analysis shows that risk premium-specific insights into positive and negative jumps provide understanding of how the BTC options market responds to major events; the premiums have predictive power for the returns of delta-hedged options, which explains potential gains from trading crypto options. Jump risk premiums are good indicators for explaining the volatile carry costs implied by BTCF. In the third chapter, we explore the crypto lending market. This market shares key characteristics with other non-recourse loans, such as security requirements and procedures for margin calls. However, the market operates without a conventional interest rate structure. To address this, we propose a fair interest rate structure by modeling the crypto lending position as an American barrier option.
5

Untersuchungen zur optimalen Steuerung der Waldentwicklung / Analysis of optimal forest development

Sánchez Orois, Sofia 27 June 2003 (has links)
No description available.
6

Refinements of the Solution Theory for Singular SPDEs

Martin, Jörg 14 August 2018 (has links)
Diese Dissertation widmet sich der Untersuchung singulärer stochastischer partieller Differentialgleichungen (engl. SPDEs). Wir entwickeln Erweiterungen der bisherigen Lösungstheorien, zeigen fundamentale Beziehungen zwischen verschiedenen Ansätzen und präsentieren Anwendungen in der Finanzmathematik und der mathematischen Physik. Die Theorie parakontrollierter Systeme wird für diskrete Räume formuliert und eine schwache Universalität für das parabolische Anderson Modell bewiesen. Eine fundamentale Relation zwischen Hairer's modellierten Distributionen und Paraprodukten wird bewiesen: Wir zeigen das sich der Raum modellierter Distributionen durch Paraprodukte beschreiben lässt. Dieses Resultat verallgemeinert die Fourierbeschreibung von Hölderräumen mittels Littlewood-Paley Theorie. Schließlich wird die Existenz von Lösungen der stochastischen Schrödingergleichung auf dem ganzen Raum bewiesen und eine Anwendung Hairer's Theorie zur Preisermittlung von Optionen aufgezeigt. / This thesis is concerned with the study of singular stochastic partial differential equations (SPDEs). We develop extensions to existing solution theories, present fundamental interconnections between different approaches and give applications in financial mathematics and mathematical physics. The theory of paracontrolled distribution is formulated for discrete systems, which allows us to prove a weak universality result for the parabolic Anderson model. This thesis further shows a fundamental relation between Hairer's modelled distributions and paraproducts: The space of modelled distributions can be characterized completely by using paraproducts. This can be seen a generalization of the Fourier description of Hölder spaces. Finally, we prove the existence of solutions to the stochastic Schrödinger equation on the full space and provide an application of Hairer's theory to option pricing.
7

Feedback Effects in Stochastic Control Problems with Liquidity Frictions

Bilarev, Todor 03 December 2018 (has links)
In dieser Arbeit untersuchen wir mathematische Modelle für Finanzmärkte mit einem großen Händler, dessen Handelsaktivitäten transienten Einfluss auf die Preise der Anlagen haben. Zuerst beschäftigen wir uns mit der Frage, wie die Handelserlöse des großen Händlers definiert werden sollen. Wir identifizieren die Erlöse zunächst für absolutstetige Strategien als nichtlineares Integral, in welchem sowohl der Integrand als der Integrator von der Strategie abhängen. Unserere Hauptbeiträge sind hier die Identifizierung der Skorokhod M1 Topologie als geeigneter Topologue auf dem Raum aller Strategien sowie die stetige Erweiterung der Definition für die Handelserlöse von absolutstetigen auf cadlag Kontrollstrategien. Weiter lösen wir ein Liquidierungsproblem in einem multiplikativen Modell mit Preiseinfluss, in dem die Liquidität stochastisch ist. Die optimale Strategie wird beschrieben durch die Lokalzeit für Reflektion einer Diffusion an einer nicht-konstanten Grenze. Um die HJB-Variationsungleichung zu lösen und Optimalität zu beweisen, wenden wir probabilistische Argumente und Methoden aus der Variationsrechnung an, darunter Laplace-Transformierte von Lokalzeiten für Reflektion an elastischen Grenzen. In der zweiten Hälfte der Arbeit untersuchen wir die Absicherung (Hedging) für Optionen. Der minimale Superhedging-Preis ist die Viskositätslösung einer semi-linearen partiellen Differenzialgleichung, deren Nichtlinearität von dem transienten Preiseinfluss abhängt. Schließlich erweitern wir unsere Analyse auf Hedging-Probleme in Märkten mit mehreren riskanten Anlagen. Stabilitätsargumente führen zu strukturellen Bedingungen, welche für ein arbitragefreies Modell mit wechselseitigem Preis-Impakt gelten müssen. Zudem ermöglichen es jene Bedingungen, die Erlöse für allgemeine Strategien unendlicher Variation in stetiger Weise zu definieren. Als Anwendung lösen wir das Superhedging-Problem in einem additiven Preis-Impakt-Modell mit mehreren Anlagen. / In this thesis we study mathematical models of financial markets with a large trader (price impact models) whose actions have transient impact on the risky asset prices. At first, we study the question of how to define the large trader's proceeds from trading. To extend the proceeds functional to general controls, we ask for stability in the following sense: nearby trading activities should lead to nearby proceeds. Our main contribution in this part is to identify a suitable topology on the space of controls, namely the Skorokhod M1 topology, and to obtain the continuous extension of the proceeds functional for general cadlag controls. Secondly, we solve the optimal liquidation problem in a multiplicative price impact model where liquidity is stochastic. The optimal control is obtained as the reflection local time of a diffusion process reflected at a non-constant free boundary. To solve the HJB variational inequality and prove optimality, we need a combination of probabilistic arguments and calculus of variations methods, involving Laplace transforms of inverse local times for diffusions reflected at elastic boundaries. In the second half of the thesis we study the hedging problem for a large trader. We solve the problem of superhedging for European contingent claims in a multiplicative impact model using techniques from the theory of stochastic target problems. The minimal superhedging price is identified as the unique viscosity solution of a semi-linear pde, whose nonlinearity is governed by the transient nature of price impact. Finally, we extend our consideration to multi-asset models. Requiring stability leads to strong structural conditions that arbitrage-free models with cross-impact should satisfy. These conditions turn out to be crucial for identifying the proceeds functional for a general class of strategies. As an application, the problem of superhedging with cross-impact in additive price impact models is solved.
8

Dynamic semiparametric factor models

Borak, Szymon 11 July 2008 (has links)
Hochdimensionale Regressionsprobleme, die sich dynamisch entwickeln, sind in zahlreichen Bereichen der Wissenschaft anzutreffen. Die Dynamik eines solchen komplexen Systems wird typischerweise mittels der Zeitreiheneigenschaften einer geringen Anzahl von Faktoren analysiert. Diese Faktoren wiederum sind mit zeitinvarianten Funktionen von explikativen Variablen bewichtet. Diese Doktorarbeit beschäftigt sich mit einem dynamischen semiparametrischen Faktormodell, dass nichtparametrische Bewichtungsfunktionen benutzt. Zu Beginn sollen kurz die wichtigsten statistischen Methoden diskutiert werden um dann auf die Eigenschaften des verwendeten Modells einzugehen. Im Anschluss folgt die Diskussion einiger Anwendungen des Modellrahmens auf verschiedene Datensätze. Besondere Aufmerksamkeit wird auf die Dynamik der so genannten Implizierten Volatilität und das daraus resultierende Faktor-Hedging von Barrier Optionen gerichtet. / High-dimensional regression problems which reveal dynamic behavior occur frequently in many different fields of science. The dynamics of the whole complex system is typically analyzed by time propagation of few number of factors, which are loaded with time invariant functions of exploratory variables. In this thesis we consider dynamic semiparametric factor model, which assumes nonparametric loading functions. We start with a short discussion of related statistical techniques and present the properties of the model. Additionally real data applications are discussed with particular focus on implied volatility dynamics and resulting factor hedging of barrier options.

Page generated in 0.0692 seconds