• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scientific Explanations: Peer Feedback or Teacher Feedback

January 2011 (has links)
abstract: Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in the writing process from receiving peer feedback or teacher feedback on rough drafts of scientific explanations. The study also looked at whether males and females reacted differently to the treatment groups. And it examined if content knowledge and the written scientific explanations were correlated. The study looked at 38 sixth and seventh-grade students throughout a 7-week earth science unit on earth systems. The unit had six lessons. One lesson introduced the students to writing scientific explanations, and the other five were inquiry-based content lessons. They wrote four scientific explanations throughout the unit of study and received feedback on all four rough drafts. The sixth-graders received teacher feedback on each explanation and the seventh-graders received peer-feedback after learning how to give constructive feedback. The students also took a multiple-choice pretest/posttest to evaluate content knowledge. The analyses showed that there was no significant difference between the group receiving peer feedback and the group receiving teacher feedback on the final drafts of the scientific explanations. There was, however, a significant effect of practice on the scores of the scientific explanations. Students wrote significantly better with each subsequent scientific explanation. There was no significant difference between males and females based on the treatment they received. There was a significant correlation between the gain in pretest to posttest scores and the scientific explanations and a significant correlation between the posttest scores and the scientific explanations. Content knowledge and written scientific explanations are related. Students who wrote scientific explanations had significant gains in content knowledge. / Dissertation/Thesis / M.A. Curriculum and Instruction 2011
2

IMPACT OF STUDENTS’ SCAFFOLDED SMALL-GROUP DISCUSSIONS ON THEIR WRITTEN SCIENTIFIC EXPLANATIONS

Klavon, Timothy, 0000-0002-2890-0970 January 2020 (has links)
Students will very often write incomplete explanations when asked to do so. This may be due to various reasons, including but not limited to a lack of understanding of the content or a lack of motivation. Developing an understanding of how students form and orally express scientific explanations (i.e., participating in scientific discourse) and comparing that to written explanations will give insight into how students communicate the construction of their scientific explanations. This dissertation used sociocultural theory as the framework to study investigate the transcribed conversations of student work groups as they complete Model-Evidence Link (MEL) diagram activities and then write evaluative explanations of the evidence to model relationships (Lombardi, Bailey et al., 2018).Transcripts coded with the sociocultural discourse analysis (SDA) framework and the Lombardi, Brandt et al. (2016) evaluation rubric provided the primary data for this project, as well as data previously collected as part of the MEL Project. Structural equation modeling investigated the impact of the Quality of Conversation (QoC) construct on final MEL Project structural equation model (tSEM). Multivariate analysis was used to determine the trends of change over time for the evaluation scores. Finally, an adapted text analysis framework was used to make comparisons between transcripts and the written explanation tasks. Analysis found that the pathway from QoC to post-plausibility through evaluation in the experimental SEM was significant with a good model fitness (Tenenhaus GoF= 0.349, medium > 0.25). Analysis of the evaluation scores of the students showed no particular growth trends and qualitative analysis supported previous findings that the students use descriptive levels of evaluation when talking about and writing about the relationships between explanatory models and lines of evidence. This project found that the use of the MEL diagram may enhance student levels of evaluation when investigating the links between lines of evidence and explanatory models. However, a qualitative analysis of the student transcripts finds that students tend to use the basest level of evaluation (i.e., descriptive) in their discourse. This is consistent with the level of evaluation found in the written explanation tasks. This led me to suggest to teachers that they continue to support their students’ group conversations with discourse scaffolds. / Teaching & Learning
3

The Roles of Empirical Evidence, Judgment, and Values in Scientific Explanations: The Case of Gender Differences in Spatial Ability

Brunton, James Ryan 24 July 2015 (has links)
No description available.
4

The Darwinian revolution as a knowledge reorganization

Zacharias, Sebastian 24 February 2015 (has links)
Die Dissertation leistet drei Beiträge zur Forschung: (1) Sie entwickelt ein neuartiges vierstufiges Modell wissenschaftlicher Theorien. Dieses Modell kombiniert logisch-empiristische Ansätze (Carnap, Popper, Frege) mit Konzepten von Metaphern & Narrativen (Wittgenstein, Burke, Morgan), erlaubt so deutlich präzisiere Beschreibungen wissenschaftlicher Theorien bereit und löst/mildert Widersprüche in logisch-empiristischen Modellen. (Realismus vs. Empirismus, analytische vs. synthetische Aussagen, Unterdeterminiertheit/ Holismus, wissenschaftliche Erklärungen, Demarkation) (2) Mit diesem Modell gelingt ein Reihenvergleich sechs biologischer Theorien von Lamarck (1809), über Cuvier (1811), Geoffroy St. Hilaire (1835), Chambers (1844-60), Owen (1848-68), Wallace (1855/8) zu Darwin (1859-1872). Dieser Vergleich offenbart eine interessante Asymmetrie: Vergleicht man Darwin mit je einem Vorgänger, so bestehen zahlreiche wichtige Unterschiede. Vergleicht man ihn mit fünf Vorgängern, verschwinden diese fast völlig: Darwins originärer Beitrag zur Revolution in der Biologie des 19.Jh ist klein und seine Antwort nur eine aus einer kontinuierlichen Serie auf die empirischen Herausforderungen durch Paläontologie & Biogeographie seit Ende des 18. Jh. (3) Eine gestufte Rezeptionsanalyse zeigt, warum wir dennoch von einer Darwinschen Revolution sprechen. Zuerst zeigt eine quantitative Analyse der fast 2.000 biologischen Artikel in Britannien zwischen 1858 und 1876, dass Darwinsche Konzepte zwar wichtige Neuerungen brachten, jedoch nicht singulär herausragen. Verlässt man die Biologie und schaut sich die Rezeption bei anderen Wissenschaftlern und gebildeten Laien an, wechselt das Bild: Je weiter man aus der Biologie heraustritt, desto weniger Ebenen biologischen Wissens kennen die Rezipienten und desto sichtbarer wird Darwins Beitrag. Schließlich findet sich sein Beitrag in den abstraktesten Ebenen des biologischen Wissens: in Narrativ und Weltbild – den Ebenen die Laien rezipieren. / The dissertation makes three contributions to research: (1) It develops a novel 4-level-model of scientific theories which combines logical-empirical ideas (Carnap, Popper, Frege) with concepts of metaphors & narratives (Wittgenstein, Burke, Morgan), providing a new powerful toolbox for the analysis & comparison of scientific theories and overcoming/softening contradictions in logical-empirical models. (realism vs. empiricism, analytic vs. synthetic statements, holism, theory-laden observations, scientific explanations, demarcation) (2) Based on this model, the dissertation compares six biological theories from Lamarck (1809), via Cuvier (1811), Geoffroy St. Hilaire (1835), Chambers (1844-60), Owen (1848-68), Wallace (1855/8) to Darwin (1859-1872) and reveals an interesting asymmetry: Compared to any one of his predecessors, Darwins theory appears very original, however, compared to all five predecessor theories, many of these differences disappear and it remains but a small original contribution by Darwin. Thus, Darwin’s is but one in a continuous series of responses to the challenges posed to biology by paleontology and biogeography since the end of the 18th century. (3) A 3-level reception analysis, finally, demonstrates why we speak of a Darwinian revolution nevertheless. (i) A quantitative analysis of nearly 2.000 biological articles reveals that Darwinian concepts where indeed an important theoretical innovation – but definitely not the most important of the time. (ii) When leaving the circle of biology and moving to scientists from other disciplines or educated laymen, the landscape changes. The further outside the biological community, the shallower the audience’s knowledge – and the more visible Darwin’s original contribution. After all, most of Darwin’s contribution can be found in the narrative and worldview of 19th century biology: the only level of knowledge which laymen receive.

Page generated in 0.1397 seconds