Spelling suggestions: "subject:"secondordre"" "subject:"second’ordine""
81 |
Modelling the vibrational response and acoustic radiation of the railway tracks / Modélisation de la réponse vibratoire et du rayonnement acoustique de la voie ferréeCettour-Janet, Raphael 12 September 2019 (has links)
Dans un contexte de densification des villes et de leurs réseaux de transport, les gens sont de plus en plus exposés au bruit. Ainsi, le résultat de l'étude d'impact vibro-acoustique joue un rôle primordial dans l'expansion du réseau ferroviaire. L'une des principales sources est le bruit de roulement : La rugosité de la surface de la roue et du rail produit un déplacement imposé sur ces derniers. Ce déplacement entraine une réponse vibratoire des roues et de la voie ferrée et leurs rayonnements acoustiques. Cette thèse propose une amélioration de la modélisation vibro-acoustique de la voie ferrée.Pour la réponse vibratoire, le coté infini de la voie et sa déformation dans les 3 dimensions rendent les modèles analytiques et les éléments finis non-optimales dans la gamme de fréquence de l’audible. La méthode élément fini semi-périodique (SAFEM) est utilisée dans cette thèse pour modéliser une voie à support continue. Elle est ensuite couplée au théorème de Floquet pour modéliser une voie à support périodique. Cependant, cette technique génère des problèmes numériques qui ont imposé un algorithme adapté. La méthode d'Arnoldi du second ordre (SOAR) est utilisée avant de résoudre l'équation SAFEM permet de résoudre ces problèmes ainsi qu’apporter la stabilité requise. Des comparaisons avec d’autres modèles et des données expérimentales permettent de valider la méthode.Pour le rayonnement acoustique, la simulation de grand domaine en haute fréquence rendent inadapté l'utilisation de techniques conventionnelles (FEM, BEM, ...). La méthode proposée ici : la théorie variationnelle du rayon complexe est particulièrement bien adaptée à ce cas. Les principales caractéristiques de l'approche VTCR sont l'utilisation d'une formulation faible du problème acoustique, qui permet de considérer automatiquement les conditions limites entre sous-domaines. Ensuite, l'utilisation d'une répartition intégrale des ondes planes dans toutes les directions permet de simuler le champ acoustique. Les inconnues du problème sont leurs amplitudes. Cette méthode qui a déjà montré son efficacité pour les domaines fermés a été étendue au domaine ouvert et couplée à la réponse vibratoire. Des comparaisons avec des solutions analytiques et des simulations FEM à basse fréquence permettent de valider la méthode. / In a context of urban and transport network densification, people are increasingly exposed to noise. Consequently, the result of vibro-acoustic impact assessment has a pivotal role in rail network expansion. One of the main sources is the rolling noise: Roughness on the wheel and rail surface produce an imposed displacement one the both. This last, generates vibrational response of wheels and the railway track and their acoustic radiation. This PhD thesis presents some improvements of the vibro-acoustic railway track modelling.Concerning vibrational response, the infinite dimension in the longitudinal direction of the track and its deformation in the 3 dimensions, make the analytical models and finite elements non-optimal. The Semi-analytical finite element method (SAFEM), used in this thesis, is particularly well adapted in this case. Firstly, it is used to model railway track on a continuous support. Then, it is coupled with Floquet theorem to model tracks with a periodic support. However, this technique suffers from numerical problems that imposed an adapted algorithm. The second-order Arnoldi method (SOAR) is used to tackle them. This reduction allows to eliminate critical values improving the robustness of the method. Comparison with existing techniques and experimental results validate this model.Concerning acoustic radiation, big domains simulations at high frequency are almost unfeasible when using conventional techniques (FEM, BEM,…). The method used in this thesis, the Variational theory of complex ray (VTCR) is particularly well adapted to these cases. The principal features of VTCR approach are the use of a weak formulation of the acoustic problem, which allows to consider automatically boundary conditions between sub-domains. Then, the use of an integral repartition of plane waves in all the direction allow to simulate the acoustic field. The unknowns of the problem are their amplitudes. This method well assessed for closed domain, has been extended to open domain and coupled to vibrational response of the rail. Comparison with analytic solution and FEM simulation at low frequency allow to validate the method.Coupling these both methods allowed to simulate complex real life vibro-acoustic scenarios. Result of different railway tracks are presented and validated
|
82 |
Planarité et Localité en Percolation / Planarity and locality in percolation theoryTassion, Vincent 30 June 2014 (has links)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens. / This thesis is part of the mathematical study of percolation theory, which includes a family of models with a phase transition. Major advances in the 2000s, including the invention of SLE and the proof of conformal invariance of critical Bernoulli percolation, provide us with a very complete picture of the Bernoulli percolation process on the triangular lattice. Fortunately, many questions remain open, and motivated our work.The first of these is the universality of planar percolation, which states that the macroscopic properties of critical planar percolation should not depend on the underlying graph. We study this question in the framework of Divide and Color percolation, and prove in this context a result that goes in the direction of universality. A weaker universality statement is given by the theory of Russo-Seymour-Welsh (RSW), which is known to hold for planar Bernoulli percolation (without dependence) on sufficiently symmetric graphs. We study new RSW-type arguments for percolation models with dependence.The second question is the absence of an infinite cluster at the critical point, an important question from a physical point of view, equivalent to the continuity of the phase transition. In two different joint works with Hugo Duminil-Copin and Vladas Sidoravicius, we show that the phase transition is continuous for Bernoulli percolation on the graph Z^2 x {0,...,k} and for FK percolation on the square lattice with parameter q smaller than or equal to 4.Finally, the last question that guided us is the locality of the critical point: is it possible to determine with good accuracy the critical value for Bernoulli percolation on a graph if we know only the balls with large radii? Jointly with Sébastien Martineau, we answer positively to this question in the framework of Cayley graphs of abelian groups.
|
83 |
Traitement aveugle et semi-aveugle du signal pour les télécommunications et le génie biomédicalZarzoso, Vicente 09 November 2009 (has links) (PDF)
Ce rapport résume mes activités de recherche depuis l'obtention de mon doctorat. Je me suis penché sur le problème fondamental de l'estimation de signaux sources à partir de l'observation de mesures corrompues de ces signaux, dans des scénarios où les données mesurées peuvent être considérées comme une transformation linéaire inconnue des sources. Deux problèmes classiques de ce type sont la déconvolution ou égalisation de canaux introduisant des distorsions linéaires, et la séparation de sources dans des mélanges linéaires. L'approche dite aveugle essaie d'exploiter un moindre nombre d'hypothèses sur le problème à résoudre : celles-ci se réduisent typiquement à l'indépendance statistique des sources et l'inversibilité du canal ou de la matrice de mélange caractérisant le milieu de propagation. Malgré les avantages qui ont suscité l'intérêt pour ces techniques depuis les années soixante-dix, les critères aveugles présentent aussi quelques inconvénients importants, tels que l'existence d'ambiguïtés dans l'estimation, la présence d'extrema locaux associés à des solutions parasites, et un coût de calcul élevé souvent lié à une convergence lente. Ma recherche s'est consacrée à la conception de nouvelles techniques d'estimation de signal visant à pallier aux inconvénients de l'approche aveugle et donc à améliorer ses performances. Une attention particulière a été portée sur deux applications dans les télécommunications et le génie biomédical : l'égalisation et la séparation de sources dans des canaux de communications numériques, et l'extraction de l'activité auriculaire à partir des enregistrements de surface chez les patients souffrant de fibrillation auriculaire. La plupart des techniques proposées peuvent être considérées comme étant semi-aveugles, dans le sens où elles visent à exploiter des informations a priori sur le problème étudié autres que l'indépendance des sources ; par exemple, l'existence de symboles pilotes dans les systèmes de communications ou des propriétés spécifiques de la source atriale dans la fibrillation auriculaire. Dans les télécommunications, les approches que j'ai explorées incluent des solutions algébriques aux fonctions de contraste basées sur la modulation numérique, la combinaison de contrastes aveugles et supervisés dans des critères semi-aveugles, et une technique d'optimisation itérative basée sur un pas d'adaptation calculé algébriquement. Nos efforts visant à extraire le signal atrial dans des enregistrements de fibrillation auriculaire nous ont permis non seulement de dégager de nouvelles fonctions de contraste basées sur les statistiques de second ordre et d'ordre élevé incorporant l'information a priori sur les statistiques des sources, mais aussi d'aboutir à de nouveaux résultats d'impact clinique et physiologique sur ce trouble cardiaque encore mal compris. Ce rapport se conclut en proposant quelques perspectives pour la continuation de ces travaux. Ces recherches ont été menées en collaboration avec un nombre de collègues en France et à l'étranger, et ont également compris le co-encadrement de plusieurs doctorants. Les contributions qui en ont découlé ont donné lieu à plus de soixante publications dans des journaux, des conférences et des ouvrages collectifs à caractère international. Quelques-unes de ces publications sont jointes à ce document.
|
84 |
Quelques résultats sur les équations rétrogrades et équations aux dérivées partielles stochastiques avec singularités. / Some results on backward equations and stochastic partial differential equations with singularitiesPiozin, Lambert 23 June 2015 (has links)
Cette thèse est consacrée à l'étude de quelques problèmes dans le domaine des équations différentielles stochastiques rétrogrades (EDSR), et leurs applications aux équations aux dérivées partielles.Dans le premier chapitre, nous introduisons la notion d'équation différentielle doublement stochastique rétrograde (EDDSR) avec condition terminale singulière. Nous étudions d’abord les EDDSR avec générateur monotone, et obtenons ensuite un résultat d'existence par un schéma d'approximation. Une dernière section établit le lien avec les équations aux dérivées partielles stochastiques, via l'approche solution faible développée par Bally, Matoussi en 2001.Le deuxième chapitre est consacré aux EDSR avec condition terminale singulière et sauts. Comme dans le chapitre précédent la partie délicate sera de prouver la continuité en T. Nous formulons des conditions suffisantes sur les sauts afin d'obtenir cette dernière. Une section établit ensuite le lien entre solution minimale de l'EDSR et équations intégro-différentielles. Enfin le dernier chapitre est dédié aux équations différentielles stochastiques rétrogrades du second ordre (2EDSR) doublement réfléchies. Nous avons établi l'existence et l'unicité de telles équations. Ainsi, il nous a fallu dans un premier temps nous concentrer sur le problème de réflexion par barrière supérieure des 2EDSR. Nous avons ensuite combiné ces résultats à ceux existants afin de donner un cadre correct aux 2EDSRDR. L'unicité est conséquence d'une propriété de représentation et l'existence est obtenue en utilisant les espaces shiftés, et les distributions de probabilité conditionnelles régulières. Enfin une application aux jeux de Dynkin et aux options Israëliennes est traitée dans la dernière section. / This thesis is devoted to the study of some problems in the field of backward stochastic differential equations (BSDE), and their applications to partial differential equations.In the first chapter, we introduce the notion of backward doubly stochastic differential equations (BDSDE) with singular terminal condition. A first work consists to study the case of BDSDE with monotone generator. We then obtain existing result by an approximating scheme built considering a truncation of the terminal condition. The last part of this chapter aim to establish the link with stochastic partial differential equations, using a weak solution approach developed by Bally, Matoussi in 2001.The second chapter is devoted to the BSDEs with singular terminal conditions and jumps. As in the previous chapter the tricky part will be to prove continuity in T. We formulate sufficient conditions on the jumps in order to obtain it. A section is then dedicated to establish a link between a minimal solution of our BSDE and partial integro-differential equations.The last chapter is dedicated to doubly reflected second order backward stochastic differential equations (2DRBSDE). We have been looking to establish existence and uniqueness for such equations. In order to obtain this, we had to focus first on the upper reflection problem for 2BSDEs. We combined then these results to those already existing to give a well-posedness context to 2DRBSDE. Uniqueness is established as a straight consequence of a representation property. Existence is obtained using shifted spaces, and regular conditional probability distributions. A last part is then consecrated to the link with some Dynkin games and Israeli options.
|
85 |
Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation / Modélisation mathématique de problèmes relatifs au traitement d'images : étude théorique et applications aux méthodes conjointes de recalage et de segmentationDebroux, Noémie 15 March 2018 (has links)
Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier deux images via une transformation, la segmentation d'images dont le but est de délimiter les contours des objets présents au sein d'une image, et la décomposition d'images intimement liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et sa partie complémentaire oscillante appelée texture, par des approches variationnelles locales et non locales. Les relations étroites existant entre ces différents problèmes motivent l'introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmontant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé aborde la problématique de recalage d'images guidé par des résultats intermédiaires de segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement puis mis à l'épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté tente de répondre à un besoin précis du CEREMA (Centre d'Études et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement) à savoir la détection automatique de fissures sur des images d'enrobés bitumineux. De part la complexité des images à traiter, une méthode conjointe de décomposition et de segmentation de structures fines est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les images fournies. / In this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images.
|
Page generated in 0.0314 seconds