31 |
Curvelet imaging and processing : an overviewHerrmann, Felix J. January 2004 (has links)
In this paper an overview is given on the application of directional basis functions, known under the name Curvelets/Contourlets, to various aspects of seismic processing and imaging. Key concepts in the approach are the use of (i) that localize in both domains (e.g. space and angle); (ii) non-linear estimation, which corresponds to localized muting on the coefficients, possibly supplemented by constrained optimization (iii) invariance of the basis functions under the imaging operators. We will discuss applications that include multiple and ground roll removal; sparseness-constrained least-squares migration and the computation of 4-D difference cubes.
|
32 |
Velocity model building by full waveform inversion of early arrivals & reflections and case study with gas cloud effect / Influence des ondes réfléchies sur l'inversion de formes d'onde : vers une meilleure compréhension des ondes réfléchies et leur utilisation dans l'inversion de formes d'ondeZhou, Wei 30 September 2016 (has links)
L'inversion des formes d'onde (full waveform inversion, FWI) a suscité un intérêt dans le monde entier pour sa capacité à estimer de manière précise et détaillée les propriétés physiques du sous-sol. La FWI est généralement formulée sous la forme d'un problème d'ajustement des données par moindres carrés et résolus par une approche linéarisée utilisant des méthodes d'optimisation locales. Cependant, la FWI est bien connue de souffrir du problème de saut de phase rendant les résultats fortement dépendant de la qualité des modèles initiaux. L'inversion des formes d'ondes des arrivées réfléchies (reflection waveform inversion, RWI) a récemment été proposée pour atténuer ce problème en supposant une séparation d'échelle entre le modèle de vitesse lisse et le modèle de réflectivité à haut nombre d'onde. La formulation de RWI considère explicitement les ondes réfléchies afin d'extraire de ces ondes une information sur les variations lisses de vitesse des zones profondes. Cependant, la méthode néglige les ondes transmises qui contraignant les informations lisses de vitesse en proche surface.Dans cette thèse, une étude de la sensibilité en nombre d'ondes des méthodes de FWI et RWI a d'abord été revisitée dans le cadre de la tomographie en diffraction et des décompositions orthogonales. A partir de cette analyse, je propose une nouvelle méthode, à savoir l'inversion jointe des formes d'ondes transmises et réfléchies (joint full waveform inversion, JFWI). La méthode propose une formulation unifiée pour combiner la FWI des transmissions et la RWI pour les réflexions, donnant naturellement une sensibilité commune aux petits nombres d'onde venant des arrivées grand-angle et réfléchies. Les composantes à hauts nombres d'onde sont naturellement atténuées par la formulation. Pour satisfaire l'hypothèse de séparation d'échelle, j'utilise une paramétrisation du sous-sol basée sur la vitesse des ondes de compression et l'impédance acoustique. La complexité temporelle de cette approche est le double de la méthode de FWI classique et la requête mémoire reste la même.Une procédure d'inversion est ensuite proposée, permettant d'estimer alternativement le modèle de la vitesse du sous-sol par JFWI et l'impédance inversion de formes d'ondes réfléchies. Un exemple synthétique réaliste du modèle de Valhall est d'abord utilisé avec des données de streamer et à partir d'un modèle initial très lisse. Dans ce cadre, alors que la FWI converge vers un minimum local, la JFWI réussit à reconstruire un modèle de vitesse lisse de bonne qualité. La prise en compte des ondes tournante par la JFWI montre un fort intérêt pour la qualité de reconstruction superficielle, comparée à la méthode RWI seule. Cela se traduit ensuite par une reconstruction améliorée en profondeur. Le modèle de vitesse lisse construit par JFWI peut ensuite être considéré comme modèle initial pour la FWI classique, afin d'injecter le contenu en haut nombres d'onde tout en évitant le problème de saut de phase.Les avantages et limites de l'approche de JFWI sont ensuite étudiés dans une application sur données réelles, venant d'un profil 2D de données de fond de mer (OBC) recoupant un nuage de gaz au dessus d'un réservoir. Plusieurs modèles initiaux et stratégies d'inversion sont testés afin de minimiser le problème de saut de phase, tout en construisant des modèles de sous-sol avec une résolution suffisante. Sous réserve de mettre en œuvre des stratégies limitant le problème de saut de phase, la JFWI montre qu'elle peut produire un modèle de vitesse acceptable, injectant les bas nombres d'onde dans le modèle de vitesse. L'amélioration de l'éclairage en angles de diffraction fournie par des acquisitions 3D devrait permettre de pouvoir commencer l'inversion par JFWI à partir de modèle encore moins bien définis. / Full waveform inversion (FWI) has attracted worldwide interest for its capacity to estimate the physical properties of the subsurface in details. It is often formulated as a least-squares data-fitting procedure and routinely solved by linearized optimization methods. However, FWI is well known to suffer from cycle skipping problem making the final estimations strongly depend on the user-defined initial models. Reflection waveform inversion (RWI) is recently proposed to mitigate such cycle skipping problem by assuming a scale separation between the background velocity and high-wavenumber reflectivity. It explicitly considers reflected waves such that large-wavelength variations of deep zones can be extracted at the early stage of inversion. Yet, the large-wavelength information of the near surface carried by transmitted waves is neglected.In this thesis, the sensitivity of FWI and RWI to subsurface wavenumbers is revisited in the frame of diffraction tomography and orthogonal decompositions. Based on this analysis, I propose a new method, namely joint full waveform inversion (JFWI), which combines the transmission-oriented FWI and RWI in a unified formulation for a joint sensitivity to low wavenumbers from wide-angle arrivals and short-spread reflections. High-wavenumber components are naturally attenuated during the computation of model updates. To meet the scale separation assumption, I also use a subsurface parameterization based on compressional velocity and acoustic impedance. The temporal complexity of this approach is twice of FWI and the memory requirement is the same.An integrated workflow is then proposed to build the subsurface velocity and impedance models in an alternate way by JFWI and waveform inversion of the reflection data, respectively. In the synthetic example, JFWI is applied to a streamer seismic data set computed in the synthetic Valhall model, the large-wavelength characteristics of which are missing in the initial 1D model. While FWI converges to a local minimum, JFWI succeeds in building a reliable velocity macromodel. Compared with RWI, the involvement of diving waves in JFWI improves the reconstruction of shallow velocities, which translates into an improved imaging at greater depths. The smooth velocity model built by JFWI can be subsequently taken as the initial model for conventional FWI to inject high-wavenumber content without obvious cycle skipping problems.The main promises and limitations of the approach are also reviewed in the real-data application on the 2D OBC profile cross-cutting gas cloud.Several initial models and offset-driven strategies are tested with the aim to manage cycle skipping while building subsurface models with sufficient resolution. JFWI can produce an acceptable velocity model provided that the cycle skipping problem is mitigated and sufficient low-wavenumber content is recovered at the early stage of inversion. Improved scattering-angle illumination provided by 3D acquisitions would allow me to start from cruder initial models.
|
33 |
Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues / High order discontinuous Galerkin methods for time-harmonic elastodynamicsBonnasse-Gahot, Marie 15 December 2015 (has links)
Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage a un coût assez élevé, l'industrie pétrolière s'intéresse à des méthodes capables de reconstituer les images de la structure terrestre interne avant de le faire. La technique d'imagerie sismique la plus utilisée est la technique de sismique-réflexion qui est basée sur le modèle de l'équation d'ondes. L'imagerie sismique est un problème inverse qui requiert de résoudre un grand nombre de problèmes directs. Dans ce contexte, nous nous intéressons dans cette thèse à la résolution du problème direct en régime harmonique, soit à la résolution des équations d'Helmholtz. L'objectif principal est de proposer et de développer un nouveau type de solveur élément fini (EF) caractérisé par un opérateur discret de taille réduite (comparée à la taille des solveurs déjà existants) sans pour autant altérer la précision de la solution numérique. Nous considérons les méthodes de Galerkine discontinues (DG). Comme les méthodes DG classiques sont plus coûteuses que les méthodes EF continues si l'on considère un même problème à cause d'un grand nombre de degrés de liberté couplés, résultat des approximations discontinues, nous développons une nouvelle classe de méthode DG réduisant ce problème : la méthode DG hybride (HDG). Pour valider l'efficacité de la méthode HDG proposée, nous comparons les résultats obtenus avec ceux obtenus avec une méthode DG basée sur des flux décentrés en 2D. Comme l'industrie pétrolière s'intéresse au traitement de données réelles, nous développons ensuite la méthode HDG pour les équations élastiques d'Helmholtz 3D. / The scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations.
|
34 |
Analyse de vitesse par migration quantitative dans les domaines images et données pour l’imagerie sismique / Subsurface seismic imaging based on inversion velocity analysis in both image and data domainsLi, Yubing 16 January 2018 (has links)
Les expériences sismiques actives sont largement utilisées pour caractériser la structure de la subsurface. Les méthodes dites d’analyse de vitesse par migration ont pour but la détermination d’un macro-modèle de vitesse, lisse, et contrôlant la cinématique de propagation des ondes. Le modèle est estimé par des critères de cohérence d’image ou de focalisation d’image. Les images de réflectivité obtenues par les techniques de migration classiques sont cependant contaminées par des artefacts, altérant la qualité de la remise à jour du macro-modèle. Des résultats récents proposent de coupler l’inversion asymptotique, qui donne des images beaucoup plus propres en pratique, avec l’analyse de vitesse pour la version offset en profondeur. Cette approche cependant demande des capacités de calcul et de mémoire importantes et ne peut actuellement être étendue en 3D.Dans ce travail, je propose de développer le couplage entre l’analyse de vitesse et la migration plus conventionnelle par point de tir. La nouvelle approche permet de prendre en compte des modèles de vitesse complexes, comme par exemple en présence d’anomalies de vitesses plus lentes ou de réflectivités discontinues. C’est une alternative avantageuse en termes d’implémentation et de coût numérique par rapport à la version profondeur. Je propose aussi d’étendre l’analyse de vitesse par inversion au domaine des données pour les cas par point de tir. J’établis un lien entre les méthodes formulées dans les domaines données et images. Les méthodologies sont développées et analysées sur des données synthétiques 2D. / Active seismic experiments are widely used to characterize the structure of the subsurface. Migration Velocity Analysis techniques aim at recovering the background velocity model controlling the kinematics of wave propagation. The first step consists of obtaining the reflectivity images by migrating observed data in a given macro velocity model. The estimated model is then updated, assessing the quality of the background velocity model through the image coherency or focusing criteria. Classical migration techniques, however, do not provide a sufficiently accurate reflectivity image, leading to incorrect velocity updates. Recent investigations propose to couple the asymptotic inversion, which can remove migration artifacts in practice, to velocity analysis in the subsurface-offset domain for better robustness. This approach requires large memory and cannot be currently extended to 3D. In this thesis, I propose to transpose the strategy to the more conventional common-shot migration based velocity analysis. I analyze how the approach can deal with complex models, in particular with the presence of low velocity anomaly zones or discontinuous reflectivities. Additionally, it requires less memory than its counterpart in the subsurface-offset domain. I also propose to extend Inversion Velocity Analysis to the data-domain, leading to a more linearized inverse problem than classic waveform inversion. I establish formal links between data-fitting principle and image coherency criteria by comparing the new approach to other reflection-based waveform inversion techniques. The methodologies are developed and analyzed on 2D synthetic data sets.
|
35 |
Efficient computation of seismic traveltimes in anisotropic media and the application in pre-stack depth migrationRiedel, Marko 26 May 2016 (has links)
This study is concerned with the computation of seismic first-arrival traveltimes in anisotropic media using finite difference eikonal methods. For this purpose, different numerical schemes that directly solve the eikonal equation are implemented and assessed numerically. Subsequently, they are used for pre-stack depth migration on synthetic and field data.
The thesis starts with a detailed examination of different finite difference methods that have gained popularity in scientific literature for computing seismic traveltimes in isotropic media. The most appropriate for an extension towards anisotropic media are found to be the so-called Fast Marching/Sweeping methods. Both schemes rely on different iteration strategies, but incorporate the same upwind finite difference Godunov schemes that are implemented up to the second order. As a result, the derived methods exhibit high numerical accuracy and perform robustly even in highly contrasted velocity models.
Subsequently, the methods are adapted for transversely isotropic media with vertical (VTI) and tilted (TTI) symmetry axes, respectively. Therefore, two different formulations for approximating the anisotropic phase velocities are tested, which are the weakly-anisotropic and the pseudo-acoustic approximation. As expected, the pseudo-acoustic formulation shows superior accuracy especially for strongly anisotropic media. Moreover, it turns out that the tested eikonal schemes are generally more accurate than anisotropic ray tracing approaches, since they do not require an approximation of the group velocity.
Numerical experiments are carried out on homogeneous models with varying strengths of anisotropy and the industrial BP 2007 benchmark model. They show that the computed eikonal traveltimes are in good agreement with independent results from finite difference modelling of the isotropic and anisotropic elastic wave equations, and traveltimes estimated by ray-based wavefront construction, respectively. The computational performance of the TI eikonal schemes is largely increased compared to their original isotropic implementations, which is due to the algebraic complexity of the anisotropic phase velocity formulations. At this point, the Fast Marching Method is found to be more efficient on models containing up to 50 million grid points. For larger models, the anisotropic Fast Sweeping implementation gradually becomes advantageous. Here, both techniques perform independently well of the structural complexity of the underlying velocity model.
The final step of this thesis is the application of the developed eikonal schemes in pre-stack depth migration. A synthetic experiment over a VTI/TTI layer-cake model demonstrates that the traveltime computation leads to accurate imaging results including a tilted, strongly anisotropic shale layer. The experiment shows further that the estimation of anisotropic velocity models solely from surface reflection data is highly ambiguous. In a second example, the eikonal solvers are applied for depth imaging of two-dimensional field data that were acquired for geothermal exploration in southern Tuscany, Italy. The developed methods also produce clear imaging results in this setting, which illustrates their general applicability for pre-stack depth imaging, particularly in challenging environments.
|
36 |
Seismic structure of the Arava Fault, Dead Sea TransformMaercklin, Nils January 2004 (has links)
Ein transversales Störungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von Süden nach Norden vom Extensionsgebiet im Roten Meer über das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Miozän vor etwa 17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig über der Arava Störung (Arava Fault, AF), die hier den Hauptast der DST bildet.<br />
<br />
Eine Reihe seismischer Experimente, aufgebaut aus künstlichen Quellen, linearen Profilen über die Störung und entsprechend entworfenen Empfänger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3-4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P-zu-S Geschwindigkeitsverhältnis und es gibt Anzeichen für Änderungen über die Störung hinweg. Hoch aufgelöste tomographische Geschwindigkeitsmodelle bestätigen der Verlauf der AF und stimmen gut mit der Oberflächengeologie überein. <br />
<br />
Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitfähige Schicht westlich der AF, schlecht leitendes Material östlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerstände erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite lässt sich durch eine geschichtete Struktur beschreiben, wogegen die östliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der östlichen scheint gegenüber der Oberflächenausprägung der AF nach Osten verschoben zu sein.<br />
<br />
Eine Modellierung von seismischen Reflexionen an einer Störung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfläche auf der Längenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen begünstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) für seismische Streukörper basiert auf Array Beamforming und der Kohärenzanalyse P-zu-P gestreuter seismischer Phasen. Eine sorgfältige Bestimmung der Auflösung sichert zuverlässige Abbildungsergebnisse.<br />
<br />
Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sedimentären Füllung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen präkambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegenüber der an der Oberfläche sichtbaren AF um 1 km nach Osten verschoben und lässt sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Blöcken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gestützt. Die Grenze ist möglicherweise ein Ast der AF, der versetzt gegenüber des heutigen, aktiven Asts verläuft. Der Gesamtversatz der DST könnte räumlich und zeitlich auf diese beiden Äste und möglicherweise auch auf andere Störungen in dem Gebiet verteilt sein. / The Dead Sea Transform (DST) is a prominent shear zone in the Middle East. It separates the Arabian plate from the Sinai microplate and stretches from the Red Sea rift in the south via the Dead Sea to the Taurus-Zagros collision zone in the north. Formed in the Miocene about 17 Ma ago and related to the breakup of the Afro-Arabian continent, the DST accommodates the left-lateral movement between the two plates. The study area is located in the Arava Valley between the Dead Sea and the Red Sea, centered across the Arava Fault (AF), which constitutes the major branch of the transform in this region.<br />
<br />
A set of seismic experiments comprising controlled sources, linear profiles across the fault, and specifically designed receiver arrays reveals the subsurface structure in the vicinity of the AF and of the fault zone itself down to about 3-4 km depth. A tomographically determined seismic P velocity model shows a pronounced velocity contrast near the fault with lower velocities on the western side than east of it. Additionally, S waves from local earthquakes provide an average P-to-S velocity ratio in the study area, and there are indications for a variations across the fault. High-resolution tomographic velocity sections and seismic reflection profiles confirm the surface trace of the AF, and observed features correlate well with fault-related geological observations.<br />
<br />
Coincident electrical resistivity sections from magnetotelluric measurements across the AF show a conductive layer west of the fault, resistive regions east of it, and a marked contrast near the trace of the AF, which seems to act as an impermeable barrier for fluid flow. The correlation of seismic velocities and electrical resistivities lead to a characterisation of subsurface lithologies from their physical properties. Whereas the western side of the fault is characterised by a layered structure, the eastern side is rather uniform. The vertical boundary between the western and the eastern units seems to be offset to the east of the AF surface trace.<br />
<br />
A modelling of fault-zone reflected waves indicates that the boundary between low and high velocities is possibly rather sharp but exhibits a rough surface on the length scale a few hundreds of metres. This gives rise to scattering of seismic waves at this boundary. The imaging (migration) method used is based on array beamforming and coherency analysis of P-to-P scattered seismic phases. Careful assessment of the resolution ensures reliable imaging results.<br />
<br />
The western low velocities correspond to the young sedimentary fill in the Arava Valley, and the high velocities in the east reflect mainly Precambrian igneous rocks. A 7 km long subvertical scattering zone reflector is offset about 1 km east of the AF surface trace and can be imaged from 1 km to about 4 km depth. The reflector marks the boundary between two lithological blocks juxtaposed most probably by displacement along the DST. This interpretation as a lithological boundary is supported by the combined seismic and magnetotelluric analysis. The boundary may be a strand of the AF, which is offset from the current, recently active surface trace. The total slip of the DST may be distributed spatially and in time over these two strands and possibly other faults in the area.
|
37 |
Microseismic event location and passive seismic imaging of crustal structuresHassani, Hossein 08 August 2019 (has links)
This research is aimed to develop a migration-based earthquake location algorithm and a passive seismic imaging approach to investigate microseismicity and image steep crustal structures in the mining area Schlema-Alberoda. The dataset includes single-component records of several microseismic events which occurred between 1998 and 2012 in the area. Through some tests and comparisons, the accuracy of the localization algorithm is proved. An expected extension of pre-existing faults within the granitic body and the connection between some of the structures is comfirmed by the location results. The passive imaging procedure is conducted using only P-wave secondary arrivals from the relocated events and by applying 3-D coherency migration. The reliability of the passive imaging results is verified by comparing the final image with the results of a 3-D active reflection seismic survey in the same area. In addition, the passive image complements the 3-D active image and reveals new structures that have not been imaged previously.
|
38 |
[pt] SEGMENTAÇÃO DE FALHAS SÍSMICAS USANDO ADAPTAÇÃO DE DOMÍNIO NÃO SUPERVISIONADA / [en] SEISMIC FAULT SEGMENTATION USING UNSUPERVISED DOMAIN ADAPTATIONMAYKOL JIAMPIERS CAMPOS TRINIDAD 28 November 2023 (has links)
[pt] A segmentação de falhas sísmicas apresenta uma tarefa desafiadora edemorada na geofísica, especialmente na exploração e extração de petróleo egás natural. Métodos de Aprendizado Profundo (Deep Learning) têm mostradoum grande potencial para enfrentar esses desafios e oferecem vantagens emcomparação com métodos tradicionais. No entanto, abordagens baseadas emAprendizado Profundo geralmente requerem uma quantidade substancial dedados rotulados, o que contradiz o cenário atual de disponibilidade limitadade dados sísmicos rotulados. Para lidar com essa limitação, pesquisadores têmexplorado a geração de dados sintéticos como uma solução potencial paradados reais não rotulados. Essa abordagem envolve treinar um modelo emdados sintéticos rotulados e, posteriormente, aplicar diretamente ao conjuntode dados real. No entanto, a geração de dados sintéticos encontra o problemade deslocamento de domínio devido à complexidade das situações geológicasdo mundo real, resultando em diferenças na distribuição entre conjuntosde dados sintéticos e reais. Para mitigar o problema de deslocamento dedomínio na detecção de falhas sísmicas, propomos uma nova abordagem queutiliza técnicas de Adaptação de Domínio Não Supervisionada ou UnsupervisedDomain Adaptation (UDA). Nossa proposta envolve o uso de um conjunto dedados sintéticos para treinamento do modelo e sua adaptação a dois conjuntosde dados reais disponíveis publicamente na literatura. As técnicas de UDAescolhidas incluem Maximum Mean Discrepancy (MMD), Domain-AdversarialNeural Networks (DANN) e Fourier Domain Adaptation (FDA). MMD eDANN visam alinhar características em um espaço de características comumde n dimensões, minimizando discrepâncias e aumentando a confusão dedomínio por meio do treinamento adversarial, respectivamente. Por outro lado,FDA transfere o estilo de amostras reais para sintéticas usando TransformadaRápida de Fourier. Para os experimentos, utilizamos uma versão menor doUNet e sua variante Atrous UNet, que incorpora camadas convolucionaisdilatadas em seu gargalo. Além disso, o DexiNed (Dense Extreme InceptionNetwork), um modelo do estado da arte para detecção de bordas, foi empregadopara fornecer uma análise mais abrangente. Além disso, estudamos a aplicaçãode ajuste fino ou fine-tuning em conjuntos de dados rotulados para investigarseu impacto no desempenho, pois muitos estudos o têm utilizado para reduziro deslocamento de domínio.Os resultados finais demonstraram melhorias significativas no desempenho de detecção de falhas ao aplicar técnicas de UDA, com aumento médio deaté 13 por cento em métricas de avaliação como Intersection over Union e F1-score.Além disso, a abordagem proposta obteve detecções mais consistentes de falhassísmicas com menos falsos positivos, indicando seu potencial para aplicações nomundo real. Por outro lado, a aplicação de ajuste fino não demonstrou ganhossignificativos no desempenho, mas reduziu o tempo de treinamento. / [en] Seismic fault segmentation presents a challenging and time-consuming
task in geophysics, particularly in the exploration and extraction of oil and
natural gas. Deep Learning (DL) methods have shown significant potential to
address these challenges and offer advantages compared to traditional methods.
However, DL-based approaches typically require a substantial amount of labeled data, which contradicts the current scenario of limited availability of labeled
seismic data. To address this limitation, researchers have explored synthetic
data generation as a potential solution for unlabeled real data. This approach
involves training a model on labeled synthetic data and subsequently applying
it directly to the real dataset. However, synthetic data generation encounters
the domain shift problem due to the complexity of real-world geological situations, resulting in differences in distribution between synthetic and real datasets.
To mitigate the domain shift issue in seismic fault detection, we propose a novel
approach utilizing Unsupervised Domain Adaptation (UDA) techniques. Our
proposal involves using a synthetic dataset for model training and adapting it
to two publicly available real datasets found in the literature. The chosen UDA
techniques include Maximum Mean Discrepancy (MMD), Domain-Adversarial
Neural Networks (DANN), and Fourier Domain Adaptation (FDA). MMD
and DANN aim to align features in a common n-dimensional feature space by
minimizing discrepancy and increasing domain confusion through adversarial
training, respectively. On the other hand, FDA transfers the style from real to
synthetic samples using Fast Fourier Transform. For the experiments, we utilized a smaller version of UNet and its variant Atrous UNet, which incorporates
Dilated Convolutional layers in its bottleneck. Furthermore, DexiNed (Dense
Extreme Inception Network), a state-of-the-art model for edge detection, was
employed to provide a more comprehensive analysis. Additionally, we studied
the application of fine-tuning on labeled datasets to investigate its impact on
performance, as many studies have employed it to reduce domain shift.
The final results demonstrated significant improvements in fault detection performance by applying UDA techniques, with up to a 13 percent increase
in evaluation metrics such as Intersection over Union and F1-score on average. Moreover, the proposed approach achieved more consistent detections
of seismic faults with fewer false positives, indicating its potential for realworld applications. Conversely, the application of fine-tuning did not show a
significant gain in performance but did reduce the training time.
|
39 |
Contributions à l'imagerie sismique par inversion des formes d’onde pour les équations d'onde harmoniques : Estimation de stabilité, analyse de convergence, expériences numériques avec algorithmes d'optimisation à grande échelle / Contributions to Seismic Full Waveform Inversion for Harmonic Wave Equations : Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms.Faucher, Florian 29 November 2017 (has links)
Dans ce projet, nous étudions la reconstruction de milieux terrestres souterrains.L’imagerie sismique est traitée avec un problème de minimisation itérative àgrande échelle, et nous utilisons la méthode de l’inversion des formes d’ondes(Full Waveform Inversion, FWI method). La reconstruction est basée sur desmesures d’ondes sismiques, car ces ondes sont caractérisées par le milieu danslequel elles se propagent. Tout d’abord, nous présentons les méthodesnumériques qui sont nécessaires pour prendre en compte l’hétérogénéité etl’anisotropie de la Terre. Ici, nous travaillons avec les solutions harmoniques deséquations des ondes, donc dans le domaine fréquentiel. Nous détaillons leséquations et l’approche numérique mises en place pour résoudre le problèmed’onde.Le problème inverse est établi afin de reconstruire les propriétés du milieu. Ils’agit d’un problème non-linéaire et mal posé, pour lequel nous disposons de peude données. Cependant, nous pouvons montrer une stabilité de type Lipschitzpour le problème inverse associé avec l’équation de Helmholtz, en considérantdes modèles représentés par des constantes par morceaux. Nous explicitons laborne inférieure et supérieure pour la constante de stabilité, qui nous permetd’obtenir une caractérisation de la stabilité en fonction de la fréquence et del’échelle. Nous revoyons ensuite le problème de minimisation associé à lareconstruction en sismique. La méthode de Newton apparaît comme naturelle,mais peut être difficilement accessible, dû au coup de calcul de la Hessienne.Nous présentons une comparaison des méthodes pour proposer un compromisentre temps de calcul et précision. Nous étudions la convergence de l’algorithme,en fonction de la géométrie du sous-sol, la fréquence et la paramétrisation. Celanous permet en particulier de quantifier la progression en fréquence, en estimantla taille du rayon de convergence de l’espace des solutions admissibles.A partir de l’étude de la stabilité et de la convergence, l’algorithme deminimisation itérative est conduit en faisant progresser la fréquence et l’échellesimultanément. Nous présentons des exemples en deux et trois dimensions, etillustrons l’incorporation d’atténuation et la considération de milieux anisotropes.Finalement, nous étudions le cas de reconstruction avec accès aux données deCauchy, motivé par les dual sensors développés en sismique. Cela nous permetde définir une nouvelle fonction coût, qui permet de prometteuses perspectivesavec un besoin minimal quant aux informations sur l’acquisition. / In this project, we investigate the recovery of subsurface Earth parameters. Weconsider the seismic imaging as a large scale iterative minimization problem, anddeploy the Full Waveform Inversion (FWI) method, for which several aspects mustbe treated. The reconstruction is based on the wave equations because thecharacteristics of the measurements indicate the nature of the medium in whichthe waves propagate. First, the natural heterogeneity and anisotropy of the Earthrequire numerical methods that are adapted and efficient to solve the wavepropagation problem. In this study, we have decided to work with the harmonicformulation, i.e., in the frequency domain. Therefore, we detail the mathematicalequations involved and the numerical discretization used to solve the waveequations in large scale situations.The inverse problem is then established in order to frame the seismic imaging. Itis a nonlinear and ill-posed inverse problem by nature, due to the limitedavailable data, and the complexity of the subsurface characterization. However,we obtain a conditional Lipschitz-type stability in the case of piecewise constantmodel representation. We derive the lower and upper bound for the underlyingstability constant, which allows us to quantify the stability with frequency andscale. It is of great use for the underlying optimization algorithm involved to solvethe seismic problem. We review the foundations of iterative optimizationtechniques and provide the different methods that we have used in this project.The Newton method, due to the numerical cost of inverting the Hessian, may notalways be accessible. We propose some comparisons to identify the benefits ofusing the Hessian, in order to study what would be an appropriate procedureregarding the accuracy and time. We study the convergence of the iterativeminimization method, depending on different aspects such as the geometry ofthe subsurface, the frequency, and the parametrization. In particular, we quantifythe frequency progression, from the point of view of optimization, by showinghow the size of the basin of attraction evolves with frequency. Following the convergence and stability analysis of the problem, the iterativeminimization algorithm is conducted via a multi-level scheme where frequencyand scale progress simultaneously. We perform a collection of experiments,including acoustic and elastic media, in two and three dimensions. Theperspectives of attenuation and anisotropic reconstructions are also introduced.Finally, we study the case of Cauchy data, motivated by the dual sensors devicesthat are developed in the geophysical industry. We derive a novel cost function,which arises from the stability analysis of the problem. It allows elegantperspectives where no prior information on the acquisition set is required.
|
40 |
Imagerie sismique de la structure profonde de la marge Algérienne orientale (secteur de Jijel) : implications en terme de potentiel pétrolier / Seismic imaging of the Eastern Algerian marging of JijelMihoubi, Abdelhafid 30 June 2014 (has links)
Cette thèse a été conduite dans le cadre du programme de coopération de recherche Algéro-française SPIRAL (Sismique Profonde et Investigations Régionales du Nord de l’Algérie). Ce projet vise à étudier la structure profonde de la marge algérienne par une approche combinée des techniques sismiques ; grand-angle et multi-canal. Le domaine couvert par la présente étude se concentre dans la région de Jijel dans la marge algérienne orientale. L’objectif principal de notre thèse est d'améliorer en profondeur l'imagerie de la marge algérienne en utilisant une combinaison de données sismiques grand-angle (OBS, sismomètres de fond de l'océan) et multi-canal (MCS). Le but de cette thèse est d'apporter de nouvelles connaissances pour répondre à quelques questions sur la nature de la croûte terrestre, la zone de transition continentale-océanique, la présence du sel messénien, sa distribution et sa relation entre les formations sédimentaires superficielles et les structures crustales. Dans cette étude, notre approche est une inversion jointe des enregistrements grand-angle et des données sismiques multi-canal. Nous avons conduit une série de tomographie des premières arrivées, une inversion jointe des arrivées réfractées et réfléchies ainsi qu’une modélisation gravimétrique. Etant donné que la solution du problème inverse n’est pas unique, deux programmes de tomographie ont été utilisés sur les mêmes données pour la même région d’étude à savoir : FAST (First Arrival Seismic Tomography) et Tomo2D. La tomographie a été suivie par une inversion jointe des arrivées réfractées et réfléchies suivant une approche basée sur la combinaison de la migration en profondeur « Kirchhoff » avant sommation (PSDM) des données de sismique réflexion multi-canal (MCS) et la modélisation directe des enregistrements grand-angle sur le fonds marin (OBS). Afin de vérifier la consistance du modèle de la vitesse avec les données gravimétriques, l’anomalie à l'air libre a été modélisée. Les résultats de l’imagerie conduite dans ce travail montrent la structure de la marge, la croûte continentale, la zone de transition continent-océan et la croûte océanique de la Méditerranée. La structure du modèle confirme les études antérieures basées sur des données bathymétriques, gravimétriques et magnétiques. Cette structure montre essentiellement : - un plateau continental étroit et pente continentale une très raide.- l’Expulsion du sel vers le nord impliquant la formation de diapirs au-dessus du flanc nord du bassin (plaine abyssale).- L’approfondissement et l’épaississement des séquences sédimentaires (bassin sédimentaire) près de la marge algérienne. Le modèle de vitesses obtenu et l’épaisseur des différentes unités structurales formant ce modèle apportent des arguments quantitatifs pour enrichir la connaissance de cette partie de la Méditerranée occidentale. Les couches sédimentaires dans le bassin montrent des vitesses sismiques allant de 1,9 km / s à 3,8 km / s. Les formations messéniennes ont été modélisées en utilisant une vitesse située entre 3,7 km / s à 3,8 km / s. La croûte continentale s’amincit sur une bande étroite de la marge dont la distance est d'environ 15 km. La vitesse de la croûte océanique dans cette région présente deux couches distinctes : l’une caractérisée par des vitesses variant de 4,7 km / s à 6.1 et l’autre de 6.2 à 7.1 km / s. La vitesse du manteau supérieur quant à elle a été modélisée par 7,9 km / s. / This thesis has been conducted within the framework of the Algerian-French research cooperation program SPIRAL (Sismique Profonde et Investigations Régionales du Nord de l’Algérie). This project aims to study the deep structure of the Algerian margin. The area covered by this study focuses in the region of Jijel in eastern Algerian margin.The main objective of our thesis is to improve depth imaging of the Algerian margin using a combined approach of seismic techniques; wide-angle and multi- channel seismic data. The purpose of this thesis is to bring new knowledge to answer some questions about the nature of the crust, the area of continental -oceanic transition, the presence of Messinian salt, its distribution and relationship between surface sedimentary formations and crustal structures.This study presents the results of a deep seismic survey across the north Algerian margin, based on the combination of 2D multi-channel and wide-angle seismic data simultaneously recorded by 41 ocean bottom seismometers deployed along a North-South line extending 180 km off Jijel into the Algerian offshore basin, and 25 land stations deployed along a 100 km-long line, cutting through the Lesser Kabylia and the Tellian thrust-belt.In this study, our approach is a joint inversion of wide-angle seismic recordings (OBS, ocean bottom seismometers) and multi- channel seismic data (MCS). We conducted a series of first arrivals tomography, a joint inversion of reflected and refracted arrivals and gravity modelling. Since the solution of the inverse problem is not unique, two tomography programs were applied using the same data for the same study area; FAST (First Arrival Seismic Tomography) and Tomo2D. Tomography was followed by a joint inversion of reflected and refracted arrivals following an approach based on the combination of Kirchhoff prestack depth migration (PSDM) for MCS data and forward modelling of OBS. To check the consistency of the velocity model with gravity data, the free air anomaly was modeled.The final model obtained using forward modelling of the wide-angle data and pre-stack depth migration of the seismic reflection data provides an unprecedented view of the sedimentary and crustal structure of the margin. The sedimentary layers in the Algerian basin are 3.75 km thick to the north and up to 4.5 to 5 km thick at the foot of the margin. They are characterised by seismic velocities from 1.9 km/s to 3.8 km/s. Messinian salt formations are about 1 km thick in the study area, and are modelled and imaged using a velocity between 3.7 km/s to 3.8 km/s. The crust in the deep sea basin is about 4.5 km thick and of oceanic origin, presenting two distinct layers with a high gradient upper crust (4.7 km/s - 6.1 km) and a low gradient lower crust (6.2 km/s - 7.1 km/s). The upper mantle velocity is constrained to 7.9 km/s. The ocean-continent transition zone is very narrow between 15 km to 20 km wide. The continental crust reaches 25 km thickness as imaged from the most landward station and thins to 5 km over a less than 70 km distance. The continental crust presents steep and asymmetric upper and lower crustal geometry, possibly due to either asymmetric rifting of the margin, an underplated body, or flow of lower crustal material towards the ocean basin. Present-time deformation, as imaged from 3 additional seismic profiles, is characterized by an interplay of gravity-driven mobile-salt creep and active thrusting at the foot of the tectonically inverted Algerian margin.
|
Page generated in 0.0808 seconds