171 |
Quantum-size effects in the electronic structure of novel self-organized systems with reduced dimensionalityVarykhalov, Andrei January 2005 (has links)
The Thesis is focused on the properties of self-organized nanostructures. Atomic and electronic properties of different systems have been investigated using methods of electron diffraction, scanning tunneling microscopy and photoelectron spectroscopy. Implementation of the STM technique (including design, construction, and tuning of the UHV experimental set-up)
has been done in the framework of present work. This time-consuming work is reported to greater detail in the experimental part of this Thesis.
<br><br>
The scientific part starts from the study of quantum-size effects in the electronic structure of a two-dimensional Ag film on the supporting substrate Ni(111). Distinct quantum well states in the sp-band of Ag were observed in
photoelectron spectra. Analysis of thickness- and angle-dependent photoemission supplies novel information on the properties of the interface. For the first time the Ni(111) relative band gap was indirectly probed in the ground-state through the electronic structure of quantum well states in the adlayer. This is particularly important for Ni where valence electrons are strongly correlated.
Comparison of the experiment with calculations performed in the formalism of the extended phase accumulation model gives the substrate gap which is fully consistent with the one obtained by ab-initio LDA calculations. It is, however, in controversy to the band structure of Ni measured directly by photoemission. These results lend credit to the simplest view of photoemission from Ni, assigning early observed contradictions between theory and experiments to electron correlation effects in the final state of photoemission.
<br><br>
Further, nanosystems of lower dimensionality have been studied. Stepped surfaces W(331) and W(551) were used as one-dimensional model systems and as templates for self-organization of Au nanoclusters. Photon energy dependent photoemission revealed a surface resonance which was never observed before on W(110) which is the base plane of the terrace microsurfaces. The dispersion E(k) of this state measured on stepped W(331) and W(551) with angle-resolved photoelectron spectroscopy is modified by a strong umklapp effect. It appears as two parabolas shifted symmetrically relative to the microsurface normal
by half of the Brillouin zone of the step superlattice. The reported results are very important for understanding of the electronic properties of low-dimensional nanostructures.
<br><br>
It was also established that W(331) and W(551) can serve as templates for self-organization of metallic nanostructures. A combined study of electronic and atomic properties of sub-monolayer amounts of gold deposited on these templates have shown that if the substrate is slightly pre-oxidized and the temperature is elevated, then Au can alloy with the first monolayer of W. As a result, a nanostructure of uniform clusters of a surface alloy is produced all over the steps. Such clusters feature a novel sp-band in the vicinity of the Fermi level, which appears split into constant energy levels due to effects of lateral quantization.
<br><br>
The last and main part of this work is devoted to large-scale reconstructions on surfaces and nanostructures self-assembled on top. The two-dimensional surface carbide W(110)/C-R(15x3) has been extensively investigated. Photoemission studies of quantum size effects in the electronic structure of
this reconstruction, combined with an investigation of its surface geometry, lead to an advanced structural model of the carbide overlayer.
<br><br>
It was discovered that W(110)/C-R(15x3) can control self-organization of adlayers into nanostructures with extremely different electronic and structural properties. Thus, it was established that at elevated temperature the R(15x3) superstructure controls the self-assembly of sub-monolayer amounts of Au into nm-wide nanostripes. Based on the results of core level photoemission,
the R(15x3)-induced surface alloying which takes place between Au and W can be claimed as driving force of self-organization. The observed stripes exhibit a characteristic one-dimensional electronic structure with laterally quantized d-bands. Obviously, these are very important for applications, since dimensions of electronic devices have already stepped into the nm-range, where quantum-size phenomena must undoubtedly be considered.
<br><br>
Moreover, formation of perfectly uniform molecular clusters of C<sub>60</sub> was demonstrated and described in terms of the van der Waals formalism. It is the first experimental observation of two-dimensional fullerene nanoclusters with "magic numbers". Calculations of the cluster potentials using the static approach have revealed characteristic minima in the interaction energy. They are achieved for 4 and 7 molecules per cluster. The obtained "magic numbers" and the corresponding cluster structures are fully consistent with the results of the STM measurements. / Die aktuelle Doktorarbeit ist auf die Eigenschaften von selbst-organisierten Nanostrukturen fokussiert. Die strukturellen und elektronischen Eigenschaften von verschiedenen Systemen wurden mit den Methoden Elektronenbeugung, Rastertunnelmikroskopie und Photoelektronenspektroskopie untersucht. Insbesondere wurde die fuer die Rastertunnelmikroskopie in situ praeparierter Proben eingesetzte Apparatur im Rahmen dieser Arbeit konstruiert und aufgebaut. Einzelheiten hierzu sind im experimentellen Kapitel zu finden.
<br><br>
Der wissenschftliche Teil beginnt mit Untersuchungen von Quantentrogeffekten in der elektronischen Struktur einer Ag-Schicht auf Ni(111)-Substrat. Charakteristische Quantentrogzustaende im Ag-sp-Band wurden in Photoelektronenspektren beobachtet. Die Analyse von schichtdicken- und
winkelabhaengiger Photoemission hat neue und wesentliche Informationen ueber die Eigenschaften des Ag/Ni-Systems geliefert. Insbesondere konnte zum ersten Mal eine relative Bandluecke im Ni-Substrat durch das Verhalten der Quantentrogzustaende indirekt vermessen werden. Das ist fuer Ni besonders wichtig, weil es sich bei Ni um ein stark korreliertes Elektronensystem handelt. Die Ergebnisse wurden mit Rechnungen auf der Basis des erweiterten Phasenmodelles verglichen. Der Vergleich ergibt eine Bandluecke, die sehr gut mit ab-initio-Rechnungen auf Basis der lokalen Elektronendichte-Naehrung
uebereinstimmen. Dennoch widersprechen die Daten der Ni-Bandstruktur, die direkt mit Photoemission gemessen wird. Diese Kontroverse zeigt deutlich, dass
der Unterschied zwischen Theorie und Experiment Korrelationeffekten im Endzustand der Photoemission zugeordnet werden kann.
<br><br>
Des weiteren wurden Nanosysteme von noch niedrigerer Dimensionalitaet untersucht. Gestufte Oberflaechen W(331) und W(551) wurden als eindimensionale
Modellsysteme fuer die Selbstorganisation von Au-Nanoclustern benutzt. Photonenenergieabhaengige Photoemission hat eine neue Oberflaechen-resonanz
aufgedeckt, die auf der Basisebene der Terrassen dieser Systeme auftritt.
Die Dispersion E(k) von diesem Zustand, die mit winkelaufgeloester Photoemission vermessen wurde, zeigt deutlich die Einwirkung von Umklapp-Effekten. Diese zeigen sich als zwei Parabeln, die relativ zu der Terrassennormale symmetrisch um die Haelfte der Oberflaechen-Brillouinzone verschoben sind. Die erzielten Ergebnisse sind sehr wichtig fuer das Verstaendnis der elektronischen Eigenschaften von eindimensionalen Nanostrukturen.
<br><br>
Ausserdem wurde gezeigt, dass W(331) und W(551) als Vorlage fuer selbstorganisierte metallische Nanostrukturen dienen koennen. Eine kombinierte
Untersuchung von strukturellen und elektronischen Eigenschaften von unter-monolagen Mengen von Au auf diesen Substraten wurde durchgefuehrt. Es hat sich gezeigt, dass Au mit dem Substrat an der Oberflaeche legieren kann, wenn die Oberflaeche ein wenig oxidiert und die Temperatur erhoert ist. Als Folge formiert sich auf den Stufen eine Nanostruktur von gleichen (aber nicht regelmaessig verteilten) Nanoclustern aus dieser Au-W Legierung. Diese Oberflaechenlegierung bildet ein neuartiges sp-Band in der Naehe der Fermi-Kante. Zudem spaltet dieser neue elektronische Zustand in konstante Energieniveaus auf. Das beobachtete Phaenomen wird als laterale Quantisierung interpretiert.
<br><br>
Das letzte Kapitel dieser Doktorarbeit bildet auch den Hauptteil. Es handelt von Selbstorganisierungsphaenomenen auf einer Oberflaechenrekonstruktion und
den Eigenschaften von so hergestellten Nanostrukturen. Das zweidimensionale
Oberflaechen-Karbid W(110)/C-R(15x3) wurde intensiv untersucht. Beobachtete
Quantentrogeffekte in der Photoemission in Kombination mit den Ergebnissen der
Rastertunnelmikroskopuntersuchungen fuehren zu einem verbesserten Strukturmodell fuer das Oberflaechenkarbid.
<br><br>
Es wurde auch gezeigt, dass W(110)/C-R(15x3) die Selbstorganisierung von Nanostrukturen mit sehr verschiedenen elektronischen und strukturellen Eigenschaften steuern kann. Es wurde gefunden, dass bei erhoehter Temperatur die R(15x3)-Ueberstruktur die Bildung von Nanostreifen aus unter-monolagiger Au Bedeckung, von denen jede 1 nm breit ist, kontrolliert. Die hergestellten Nanostreifen besitzen eine charakteristische eindimensionale elektronische Struktur mit lateral quantisierten d-Baendern. Basierend auf der Photoemission von Rumpfniveaus wird eine Kohlenstoff-induzierte Oberflaechenlegierung
zwischen Au und W als Grund fuer die beobachtete Organisierung vorgeschlagen.
Solche Phaenomene sind sehr wichtig fuer Anwendungen, seit die Mikroelektronik in den nm-Massstab eingetreten ist, in welchem mit Quantentrogeffekten zu rechnen ist.
<br><br>
Zusaetzlich wurde die Bildung von perfekt uniformen molekularen Nanoclustern von C<sub>60</sub> auf W(110)/C-R(15x3) demonstriert. Dieses Phaenomen kann im van-der-Waals Formalismus beschrieben werden. Die berichteten Ergebnisse sind eine erstmalige experimentelle Beobachtung von zweidimensionalen Fulleren-Nanoclustern mit "magischen Zahlen". Berechnungen der Clusterpotentiale in der statischen Naeherung im Girifalco-Modell
zeigen Minima der Wechselwirkungsenergie fuer Cluster aus 4 und 7
C<sub>60</sub>-Molekuelen. Diese "magischen Zahlen" sowie die entsprechenden Clusterkonfigurationen sind vollkommen konsistent mit den Ergebnissen des STM-Experiments.
|
172 |
Funktionalisierte Poly(2-oxazoline) : kontrollierte Synthese, bioinspirierte Strukturbildung und Anwendungen / Functionalized Poly(2-oxazolines) : controlled synthesis, bioinspired structure formation and applicationsGreß, Anja January 2008 (has links)
Funktionalisierte Poly(2-oxazoline) als neue Materialien stellen sowohl unter strukturellen Gesichtspunkten als auch im Hinblick auf potentielle Anwendungen eine interessante Polymerklasse dar. Die Ausbildung von hierarchischen Strukturen mit Poly(2-oxazolinen) über intermolekulare Wasserstoffbrückenbindungen ist hierbei ein bisher nicht beachteter Aspekt. Über einen bioinspirierten Ansatz sollten gezielt funktionelle Gruppen, die für einen hierarchischen Aufbau, z.B. in Proteinen, verantwortlich sind, in vereinfachter Weise auf die synthetische Substanzklasse der Poly(2-oxazoline) übertragen werden.
Die vorliegende Arbeit beschäftigt sich mit der modularen Synthese neuer, funktionalisierter Poly(2-oxazolin) Homo- und Copolymere. Ausgehend von der Synthese von 2-(3-Butenyl)-2-oxazolin wurden definierte Präpolymere in einer kationischen Isomerisierungspolymerisation unter kontrolliert/„lebenden“ Bedingungen hergestellt. In einer anschließenden „Thio-Click“ (Thiol-En-Reaktion) Modifizierungsreaktion wurden die gewünschten funktionellen Gruppen quantitativ eingeführt. Hydroxylierte Poly(2-oxazoline) wurden hinsichtlich ihres Aggregationsverhaltens in Wasser untersucht. Bereits die jeweiligen Homopolymere bildeten aufgrund von intermolekularen Wasserstoffbrückenbindungen supramolekulare tubuläre Nanofasern aus. Durch Einsatz verschiedener analytischer Methoden konnte die innere Struktur der Nanoröhren beschrieben und ein entsprechendes Modell aufgestellt werden.
Die dargestellten funktionellen Poly(2-oxazoline) wurden hinsichtlich ihrer Anwendung als potentielle, synthetische „antifreeze additives“ untersucht. Alle Polymere besitzen eine ausgeprägte Tendenz zur Nukleierung von Wasser und führen daher zu signifikanten Änderungen der Eismorphologie. Des weiteren wurde ein carboxyliertes Derivat zur biomimetischen Mineralisation von Kalziumcarbonat eingesetzt und nach phänomenologischen Gesichtspunkten untersucht. / Functionalized poly(2-oxazoline)s are a promising class of materials concerning their self-assembly behavior as well as for future applications. Hierarchical structure formation based on hydrogen bonding interactions has not been investigated yet. Applying a bioinspired approach, functional groups promoting hierarchical structure formation are introduced to poly(2-oxazoline)s. This work is focused on the modular synthesis of new functionalized poly(2-oxazoline) homo and copolymers. Starting from the synthesis of the new monomer 2-(3-butenyl)-2-oxazolin, well-defined precursor materials were prepared via cationic isomerization polymerization. Next, the polymers were quantitatively modified with the aimed functional groups using a “thio-click” (thiol-ene) reaction. The aggregation behaviour of hydroxylated poly(2-oxazolines) in water was investigated. Homo- as well as block copolymers can form supramolecular hollow nanofibers via intermolecular hydrogen bonding. Using a variety of different analytical methods, the structure of the nanotubes was determined and a formation model was proposed. Furthermore, the functionalized poly(2-oxazoline)s were investigated as synthetic mimics of natural anti-freeze additives. It was found, that these polymers show the tendency to nucleate water, thus influencing the morphology of ice. Finally, a carboxylated derivative was applied as an additive for the mineralization of calcium carbonate.
|
173 |
Min-Protein Waves on Geometrically Structured Artificial Membranes / Min-Proteinwellen auf geometrisch strukturierten künstlichen MembranenSchweizer, Jakob 04 April 2013 (has links) (PDF)
Das stäbchenförmige Bakterium Escherichia coli teilt sich in zwei gleich große Tochterzellen. Dies ist nur möglich, wenn sich die Zelle in der Mitte teilt. Bei E. coli wird die Zellteilung durch den Zusammenschluss der FtsZ-Proteine an der Membran zum Z-Ring eingeleitet. Topologische Regulierung des Z-Ringes erfolgt durch räumlich-zeitliche Oszillationen von Min-Proteinen zwischen den beiden Zellpolen. MinC, MinD und MinE binden an und lösen sich von der Membran unter Hydrolyse von ATP und in antagonistischer Art und Weise, was zu einer alternierenden Ansammlung von MinC und MinD an den Zellpolen führt. Gemittelt über die Zeit ergibt sich somit ein MinD-Verteilungsprofil, das maximale Konzentration an den Zellpolen und ein Minimum in der Zellmitte aufweist. MinC bindet an MinD und folgt somit seiner Verteilung. Der Zusammenschluss von FtsZ-Proteinen wird durch MinC unterbunden, und somit kann sich der Z-ring nur an einer Position herausbilden, die ein Minimum an MinC aufweist - der Zellmitte.
Das Min-system wurde in der Vergangenheit auch mit einem in-vitro-Ansatz untersucht, indem Min-Proteine in künstliche, aufliegende Lipiddoppelschichten (supported lipid bilayers, SLB) rekonstitutiert wurden. Dabei bildeten die Min-Proteine kein oszillierendes Muster aus, sondern organisierten sich vielmehr in parallelen und propagierenden Wellen (Loose, 2008, Science, 320). In diesen in-vitro-Experimenten war das Membransubstrat wesentlich größer als die Wellenlänge der Min-Proteinwellen. In vivo hingegen ist die Länge der Zelle in der gleichen Größenordnung wie die charakteristische Länge des Oszillationsmusters der Min-Proteine. Daher war es das Ziel dieser Arbeit, den Einfluß einer beschränkten Fläche und geometrischer Formgebung der künstlichen Lipiddoppelschichten auf die Wellenpropagation der Min-Protein zu untersuchen.
Flächige Beschränkung künstlicher Membranen erfolgte durch Mikrostrukturtechnologie. Deckglässchen wurden mit einer Goldschicht und mikroskopischen Aussparungen unterschiedlicher geometrischer Formen strukturiert. Funktionale SLBs bildeten sich nur auf Glasflächen ohne Goldbeschichtung aus. Nach der Rekonstitution der Min-Proteine, organisierten sich diese auf den Membranstücken in parallele Wellen. Dabei bestimmte die flächige Beschränkung der künstlichen Membranen die Ausbreitungsrichtung der Min-Proteinwellen. Min-Proteinwellen konnten entlang gekrümmter Membranstreifen, in Ring- und sogar in Slalomstrukturen geleitet werden. In geraden, länglichen Strukturen richteten sich die Wellen entlang der längsten Achse aus. Kopplung von Proteinwellen auf räumlich getrennten Membranstücken in Abhängigkeit des Abstandes und des sogenannten Molecular Crowdings in der wässrigen Lösung konnte ebenfalls beobachtet werden. Diese Kopplung ist ein Indiz für inhomogene Proteinverteilungen in der Lösung oberhalb der Membran. Desweiteren konnten Min-Proteinwellen auch in diversen dreidimensionalen künstlichen Membranen rekonstitituiert werden.
Im Wildtyp von E. coli ähneln die Min-Proteindynamiken der einer Oszillation mit einer charakteristischen Länge von 5 µm. Auf SLBs, bilden Min-Proteine Wellen mit einer Wellenlänge aus, die ca. zehnmal größer ist als in vivo. Dieser Unterschied zwischen der in-vivo- und der in-vitro-Welt wurde untersucht und diskutiert. In vitro konnte die Wellenlänge um 50 % durch Erhöhung des Molecular Crowding in der Lösung sowie um 33 % durch Temperaturerhöhung verkleinert werden. Das oszillierende Muster könnte dahingegen eine Folge der Kompartimentierung sein. Erste Versuche, das Min-System in geschlossene Membrankompartimente zu rekonstitutieren, wurden getestet. / Escherichia coli, a rod-like bacterium, divides by binary fission. Cell division into two daughter cells of equal size requires that fission takes place at a midcell position. In E. coli, cell division is initiated by assembly of the FtsZ-proteins at the inner membrane to the Z-ring. Topological regulation of the Z-ring is achieved by spatiotemporal pole-to-pole oscillations of Min-proteins. MinC, MinD and MinE bind to and detach from - under hydrolysis of ATP - the membrane in an antagonistic manner leading to an alternating accumulation of MinC and MinD at the cell poles. Averaged over time, the distribution profile of MinD exhibits maximal concentration at the cell poles and a minimum at the cell center. MinC binds to MinD and thus follows its distribution. FtsZ assembly is inhibited by MinC and therefore the Z-ring can only form at a cell position low in MinC - at the cell center.
In the past, the Min-system was also investigated in an in vitro approach by reconstitution of Min-proteins into a supported lipid bilayer (SLB). Here, Min-proteins did not self-organize into an oscillatory pattern but into parallel and propagating waves (Loose, 2008, Science, 320). In this in vitro assay, the membrane substrate was infinitely large compared to the wavelength. However, in vivo, the cell length is on the same order of magnitude as the respective length scale of the oscillatory pattern of Min-proteins. Therefore, we wished to investigate the effect of lateral confinement and geometric structuring of artificial lipid bilayers on the Min-protein wave propagation.
Lateral confinement of artificial membranes was achieved by microfabrication technology. Glass slides were patterned by a gold coating with microscopic windows of different geometries, and functional SLBs were only formed on uncoated areas. Upon reconstitution, Min-proteins organized into parallel waves on the geometric membrane patches. Confinement of the artificial membranes determined the direction of propagation of Min-protein waves. Min-protein waves could be guided along curved membrane stripes, in rings and even along slalom-geometries. In elongated membrane structures, the protein waves always propagate along the longest axis. Coupling of protein waves across spatially separated membrane patches was observed, dependent on gap size and level of molecular crowding of the aqueous media above the bilayer. This indicates the existence of an inhomogeneous and dynamic protein gradient in the solution above the membrane. Furthermore, reconstitution of Min-protein waves in various three-dimensional artificial membranes was achieved.
In wild-type E. coli, Min-protein dynamics resemble that of an oscillation with a characteristic length scale of 5 µm. On supported lipid bilayers, Min-proteins self-organize into waves with a wavelength approximately 10-fold larger than in vivo. These discrepancies between the in vivo and in vitro world were investigated and discussed. In vitro, the wavelength could be decreased by a factor of 50 % by increase of the molecular crowding in solution and by 33 % through temperature increase. The oscillatory pattern is thought to be a consequence of compartmentalization and first attempts to encapsulate the Min-system in closed bilayer compartments are presented.
|
174 |
Selbstorganisation von Kohlenstoffnanoröhren zu FeldeffekttransistorenTaeger, Sebastian 19 April 2008 (has links) (PDF)
Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT) verfügen über eine Vielzahl von herausragenden und möglicherweise nutzbringenden Eigenschaften. Die kontrollierte Integration von CNT in technische Systeme stellt noch immer eine große Herausforderung dar. Im Rahmen der vorliegenden Arbeit wurden neue Methoden für den Aufbau von Strukturen und Bauelementen aus CNT entwickelt, die auf Selbstorganisation bzw. bottom-up assembly basieren. Dabei kamen sowohl biochemische als auch physikalische Verfahren zum Einsatz. Einzelsträngige DNA wurde verwendet um CNT in wässrigen Medien zu suspendieren und zu vereinzeln. Beides sind wichtige Voraussetzungen, um die günstigen elektronischen Eigenschaften der CNT zugänglich zu machen. DNA-CNT-Suspensionen wurden sowohl spektroskopisch in ihrer Gesamtheit als auch kraftmikroskopisch auf molekularer Ebene untersucht. So konnten wesentliche Parameter des Herstellungsprozesses optimiert werden, um Suspensionen mit einem hohen Gehalt an langen, sauberen, vereinzelten CNT zu erhalten. Durch die Verwendung von funktionalisierten DNA-Molekülen ist es gelungen, Halbleiterquantenpunkte und Goldkolloide an CNT anzubinden. Im Fall der Quantenpunkte gelang dies mit Hilfe der Biotin-Streptavidin Bindung unter Anwendung des Prinzips der molekularen Erkennung. Die Anbindung dieser Nanopartikel kann als Prototyp für den DNA-vermittelten Strukturaufbau aus CNT angesehen werden. Zur Deposition von CNT in Elektrodenstrukturen wurde ein auf Dielektrophorese beruhendes Verfahren eingesetzt. Dabei ist es gelungen, die wesentlichen Parameter zu identifizieren, die für die Morphologie der abgeschiedenen CNT entscheidend sind. So konnte die Dichte der CNT-Verbindungen zwischen Elektroden von einzelnen Verbindungen über wenige bis hin zu sehr vielen parallel assemblierten CNT eingestellt werden. Durch ein sich selbst steuerndes Hintereinanderlagern von CNT war es möglich auch Elektroden zu verbinden, deren Abstand größer war als die Länge der verwendeten CNT. Durch gezieltes Eliminieren metallischer CNT-Strompfade nach der Deposition ist es gelungen, CNT-Feldeffekttransistoren (CNT-FETs) mit Schaltverhältnissen von bis zu sieben Dekaden herzustellen. Auch dieses Verfahren ist skalierbar und unkompliziert, da es sich selbst steuert. Es ist skalierbar und deshalb auch für technische Anwendungen geeignet. An Hand des Beispiels der Detektion von Ethanoldampf konnte gezeigt werden, dass die über Dielektrophorese aufgebauten CNT-FETs auch als Sensoren eingesetzt werden können. Durch eine Kombination der dielektrophoretischen Deposition von CNT und dem dielektrophoretisch gesteuerten Wachstum metallischer Nanodrähte konnte eine neuartige Hybridstruktur aus CNT und Palladium-Nanodrähten erzeugt werden. Ein solches Verfahren ist eine Voraussetzung für den Aufbau integrierter nanoskaliger Schaltkreise. Die vorliegenden Ergebnisse zeigen zahlreiche Möglichkeiten auf, verschiedenartige nanoskopische Objekte miteinander integrieren, um neue Anwendungen zu ermöglichen.
|
175 |
Selbstorganisation Jugendlicher und Selbstorganisationsförderung durch kommunale Jugendarbeit / Youth Organising Themselves and Supporting Their Efforts through Local Youth WorkWendt, Peter-Ulrich 22 April 2005 (has links)
No description available.
|
176 |
Selbstorganisierte Nanostrukturen auf Germanium und Galliumantimonid und ihre Nutzung als TemplateFritzsche, Monika 13 January 2014 (has links) (PDF)
In dieser Arbeit ist die Bildung von selbstorganisierten Nanostrukturen auf Galliumantimonid (GaSb) und Germanium (Ge) durch Ionenbeschuss untersucht worden. Zudem sind die auf Ge erhaltenen Lochstrukturen als Template für Silber- und Eisenschichten verwendet worden. Bei der Bestrahlung von GaSb mit Argonionen unter senkrechtem Ioneneinfall bilden sich hexagonal geordnete Punktstrukturen, während bei der Bestrahlung von Ge mit Galliumionen unter senkrechtem Ioneneinfall hexagonal geordnete Lochstrukturen entstehen. Dabei handelt es sich um zueinander inverse Muster. Für diese beiden Materialsysteme sind die Abhängigkeit der sich bildenden Strukturen von der Ionenenergie, dem Fluss, der Fluenz und dem Ioneneinfallswinkel untersucht, und die entstehenden Muster mit theoretischen Modellen verglichen worden. Bei der Bestrahlung von GaSb unter senkrechtem Ioneneinfall steigen charakteristische Länge und Höhe mit der Ionenenergie linear an, bis sie sättigen. Eine Variation des Einfallswinkels der Ar-Ionen führt zu hexagonal geordneten Punktstrukturen, geneigten Punktstrukturen und Rippeln auf GaSb. Das Aspektverhältnis steigt mit dem Winkel an, bis es für die Rippel wieder stark absinkt. Auf Ge bilden sich bei der Bestrahlung mit Ga-Ionen Lochstrukturen, deren Höhe linear mit der Ionenenergie ansteigt und deren charakteristische Länge mit dieser absinkt. Mit steigendem Ioneneinfallswinkel bilden sich aneinander gereihte Lochstrukturen sowie unregelmäßige Muster.
Bei den Materialsystemen ist der Anstieg der Ordnung bis zu einer Sättigung mit der Fluenz ebenso wie der Anstieg der Höhe der Strukturen mit der Energie gemeinsam. Für schrägen Ioneneinfall werden gänzlich unterschiedliche Muster erhalten. Zudem ist ein Unterschied im Verhalten der charakteristischen Länge mit der Ionenenergie vorhanden. Ebenso wie die unterschiedlichen Aspektverhältnisse weist dies auf einen Unterschied im Musterbildungsprozess hin. Dieser wird auf Ge von der Vakanzdynamik dominiert, wohingegen auf GaSb das präferentielle Sputtern ausschlaggebend ist. Somit bestimmen die unterschiedlichen Materialeigenschaften von GaSb und Ge den Musterbildungsprozess.
Um ein zeitlich entkoppeltes Bestrahlen zu betrachten, wird mit dem Strahl über die Ge-Oberfläche gerastert. Die erhaltenen Muster werden mit denen durch einen stehenden Ionenstrahl entstanden verglichen. Das Rastern des Ionenstrahls hat keinen Einfluss auf die entstehenden Muster. Zudem wird der Fluss bei Bestrahlung der Ge-Oberfläche über vier Größenordnungen variiert. Da der Fluss in allen Termen der Kontinuumsgleichungen enthalten ist, ist kein Einfluss auf die entstehenden Lochstrukturen vorhanden. Bei einer Bestrahlung von Ge mit Ge-Ionen bilden sich ebenfalls Lochstrukturen, die aber keine hexagonale Nahordnung aufweisen. Damit wird eine zweite Komponente, entweder im Substrat oder aus dem Ionenstrahl, benötigt, damit die Strukturen geordnet sind.
Diese Lochstrukturen werden im Anschluss mit Silber und Eisen bedampft, um ein unterschiedliches Aufwachsen im Vergleich zu einer planaren Oberfläche zu untersuchen. Bei Verwendung einer vorstrukturierten Oberfläche steigt die Anzahl der Silbercluster aufgrund der größeren Oberfläche an. Eine Vorstrukturierung des Substrats verhindert eine Veränderung der Filmmorphologie eines nahezu geschlossenen Films durch Tempern. Bei Verwendung eines planaren Substrats bilden sich nach dem Tempern Cluster. Beim senkrechten Aufdampfen eines Eisenfilms folgt dieser der Oberfläche. Durch die erhöhte Rauigkeit aufgrund der Vorstrukturierung verändert sich die polare Magnetisierungskomponente. Beim Aufdampfen des Eisens unter streifendem Einfall bilden sich säulenartige Strukturen. Diese sind auf dem vorstrukturierten Substrat größer und haben im Mittel einen größeren Abstand. Diese Säulen weisen eine starke magnetische und magnetooptische Anisotropie auf, die im Anschluss untersucht wird. Die Verwendung des vorstrukturierten Substrats und somit die veränderte Größe der Säulen, beeinflusst die magnetischen Eigenschaften kaum.
|
177 |
TUNING MOLECULAR ARCHITECTURES AT THE LIQUID- SOLID INTERFACE BY CONTROLLING SOLVENT POLARITY AND CONCENTRATION OF MOLECULESNguyen, Thi Ngoc Ha 26 November 2014 (has links) (PDF)
Das grundlegende Verständnis von Selbstorganisationsprozessen auf molekularem Niveau ist von entscheidender Bedeutung für den Fortschritt der Nanotechnologie. In diesem Zusammenhang werden hier Untersuchungen derartiger Prozesse an der Grenzfläche zwischen einer flüssigen Phase (z.B. einer Lösung) und einer kristallinen Festkörperoberfläche durchgeführt. Die Konzentration der Lösung und die Polarität des Lösungsmittels sind von entscheidender Bedeutung für die Kontrolle der durch Selbstorganisation gebildeten Strukturen von Molekülen an den flüssig-fest Grenzflächen zu einem Graphitsubstrat (HOPG). Im Mittelpunkt der vorliegenden Arbeit stehen die Einflüsse dieser beiden Parameter auf die Anordnung der Moleküle. Zunächst wird die Polarität der Lösungsmittel diskutiert. Lösungsmittel mit verschiedenen Polaritäten wie Phenyloctan (unpolar), Fettsäuren (moderat polar) und Fettalkohole (stark polar) wurden verwendet um Trimesinsäure (TMA) zu lösen. TMA bildet keine geordnete Struktur aus wenn es aus Phenyloctan (PO) abgeschieden wird. Ein poröses Muster ("Chicken-wire"-Struktur) entsteht aus der Lösung von TMA in Octansäure, wohingegen aus der Lösung von TMA in Undecanol ein Linienmuster durch Koadsorption von TMA und Undecanol Molekülen gebildet wird. Als nächstes werden die Auswirkungen der Ultraschallbehandlung der Lösungen zur Kontrolle der Konzentration der Lösung und die daraus resultierende unterschiedliche molekulare Packungsdichte und Strukturen beschrieben. Eine selbstassemblierte Struktur aus Zick-Zack-Dimerketten wird bei der TMA-PO Lösung nur beobachtet, wenn die Lösung für 5 Stunden Ultraschall ausgesetzt wurde. Die hoher Packungsdichte in Form der "Flower"-Struktur wird für Lösungen von TMA in Octansäure gefunden, nachdem diese für lange Zeit mit Ultraschall behandelt wurden. Ein weiterer Aspekt der vorliegenden Arbeit ist die entdeckte Veresterungsreaktion an der TMA-undecanol/HOPG Grenzfläche. 1-undecyl Monoester von TMA wurde überraschender Weise an dieser Grenzfläche gefunden, nachdem die TMA-Undecanol Lösungen, für lange Zeit Ultraschall ausgesetzt wurden. Diese Monoestermoleküle bilden sich an der flüssig-fest Grenzfläche allein auf Grund der erhöhten Konzentration von TMA (ohne jegliche externe Katalysatoren). Der physikalische Hintergrund der Prozesse des Lösens und der Ultraschallbehandlung sind der Gegenstand weiterer Untersuchungen. Selbstassemblierte Abscheidung tritt auch bei Verwendung nur der reinen Lösungsmittel (Octansäure beziehungsweise Undecanol) auf, was zu verschiedenen Mustern führt, welche ebenfalls durch Ultraschallbehandlung kontrolliert eingestellt werden können.
|
178 |
Modellierung und Evaluierung von Multiagentensystemen im Kontext von KooperationsproblemenReinhold, Thomas. January 2005 (has links)
Chemnitz, Techn. Univ., Diplomarb., 2004.
|
179 |
Functional colloidal surface assemblies: Classical optics meets template-assisted self-assemblyGupta, Vaibhav 09 December 2020 (has links)
Abstract:
When noble metals particles are synthesized with progressively smaller dimensions, strikingly novel optical properties arise. For nanoscale particles, collective disturbances of the electron density known as localized surface plasmons resonances can arise, and these resonances are utilized in a variety of applications ranging from surface-enhanced molecular spectroscopy and sensing to photothermal cancer therapy to plasmon-driven photochemistry. Central to all of these studies is the plasmon’s remarkable ability to process light, capturing and converting it into intense near fields, heat, and even energetic carriers at the nanoscale. In the past decade, we have witnessed major advances in plasmonics which is directly linked with the much broader field of (colloidal) nanotechnology. These breakthroughs span from plasmon lasing and waveguides, plasmonic photochemistry and solar cells to active plasmonics, plasmonics nanocomposites and semiconductor plasmons.
All the above-mentioned phenomena rely on precise spatial placement and distinct control over the dimensions and orientation of the individual plasmonic building blocks within complex one-, two- or three-dimensional complex arrangements. For the nanofabrication of metal nanostructures at surfaces, most often lithographic approaches, e.g. e-beam lithography or ion-beam milling are generally applied, due to their versatility and precision. However, these techniques come along with several drawbacks such as limited scalability, limited resolution, limited compatibility with silicon manufacturing techniques, damping effects due to the polycrystalline nature of the metal nanostructures and low sample throughput. Thus, there is a great demand for alternative approaches for the fabrication of metal nanostructures to overcome the above-mentioned limitations. But why colloids? True three-dimensionality, lower damping, high quality modes due to mono-dispersity, and the absence of grain boundaries make the colloidal assembly an especially competitive method for high quality large-scale fabrication. On top of that, colloids provide a versatile platform in terms of size, shape, composition and surface modification and dispersion media.
540The combination of directed self-assembly and laser interference lithography is a versatile admixture of bottom-up and top-down approaches that represents a compelling alternative to commonly used nanofabrication methods. The objective of this thesis is to focus on large area fabrication of emergent spectroscopic properties with high structural and optical quality via colloidal self-assembly. We focus on synergy between optical and plasmonic effects such as: (i) coupling between localized surface plasmon resonance and Bragg diffraction leading to surface lattice resonance; (ii) strong light matter interaction between guided mode resonance and collective plasmonic chain modes leading to hybrid guided plasmon modes, which can further be used to boost the hot-electron efficiency in a semiconducting material; (iii) similarly, bilayer nanoparticle chains leading to chiro-optical effects. Following this scope, this thesis introduces a real-time tuning of such exclusive plasmonic-photonic (hybrid) modes via flexible template fabrication. Mechanical stimuli such as tensile strain facilitate the dynamic tuning of surface lattice resonance and chiro-optical effects respectively. This expands the scope to curb the rigidity in optical systems and ease the integration of such systems with flexible electronics or circuits.:Contents
Abstract
Kurzfassung
Abbreviations
1. Introduction and scope of the thesis
1.1. Introduction
1.1.1. Classical optics concepts
1.1.2. Top down fabrication methods and their challenges
1.1.3. Template-assisted self-assembly
1.1.4. Functional colloidal surface assemblies
1.2. Scope of the thesis
2. Results and Discussion
2.1. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly
2.1.1. Fabrication of flexible 2D plasmonic lattice
2.1.2. Investigation of the influence of particle size distribution on SLR quality
2.1.3. Band diagram analysis of 2D plasmonic lattice
2.1.4. Strain induced tuning of SLR
2.1.5. SEM and force transfer analysis in 2D plasmonic lattice under various strain
2.2. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating
2.2.1. Fabrication of hybrid opto-plasmonic structure via template assisted self-assembly
2.2.2. Comparison of optical band diagram of three (plasmonic, photonic and hybrid) different structures in TE and TM modes
2.2.3. Simulative comparison of optical properties of hybrid opto-plasmonic NP chains with a grating of metallic gold bars
2.2.4. Effect of cover index variation with water as a cover medium
2.3. Hot electron generation via guided hybrid modes
2.3.1. Fabrication of the hybrid GMR structure via LIL and lift-off process
2.3.2. Spectroscopic and simulative analysis of hybrid opto-plasmonic structures of different periodicities
2.3.3. Comparative study of photocurrent generation in different plasmonic structures
2.3.4. Polarization dependent response at higher wavelength
2.3.5. Directed self-assembly of gold nanoparticles within grating channels of a dielectric GMR structure supported by titanium dioxide film
2.4. Active Chiral Plasmonics Based on Geometrical Reconfiguration
2.4.1. Chiral 3D assemblies by macroscopic stacking of achiral chain substrates
3. Conclusion
4. Zusammenfassung
5. Bibliography
6. Appendix
6.1. laser interference lithography
6.2. Soft molding
6.3. Determine fill factor of plasmonic lattice
6.4. 2D plasmonic lattice of Au_BSA under strain
6.5. Characterizing order inside a 2D lattice
6.6. Template-assisted colloidal self-assembly
6.7. Out of plane lattice resonance in 1D and 2D lattices
6.8. E-Field distribution at out of plane SLR mode for 1D lattices of various periodicity with AOI 20°
6.9. Refractive index of PDMS and UV-PDMS
6.10. Refractive index measurement for sensing
6.11. Optical constants of TiO2, ma-N 405 photoresist and glass substrate measured from spectroscopic ellipsometry
Acknowledgement/ Danksagung
Erklärung & Versicherung
List of Publications
|
180 |
Development of self-assembled, rolled-up microcoils for nuclear magnetic resonance spectroscopyLepucki, Piotr 08 November 2021 (has links)
Miniaturization is a key technological approach in current times. The most prominent examples of miniaturization are personal computers and mobile phones, but we observe miniaturization in other aspects of life, with the most recent example being small portable corona test kits. In science a big part of miniaturization focuses on detectors: to make them portable, to make them integrable into bigger, multi-function systems or to enable detection of smaller and smaller samples. For many experimental techniques highly sensitive and compact devices are already available, one of the extreme examples being single photon detectors. Compared to that, miniaturization of nuclear magnetic resonance (NMR) has still a long way to go in terms of both size and sensitivity.
Recently, the successful miniaturization of an NMR coil was presented: on top of a flat polymeric bilayer a metallic layout is patterned. In an aqueous solution, one polymer layer absorbs water and swells, which induces strain between the two polymeric layers. This strain is released by a self-rolling-up of the bilayer, and the metal layer transforms into a microcoil.
Such microcoils were successfully used for impedimetric measurements, as antennas, and as mentioned for NMR, but their performance in the latter was far from optimal. This thesis focuses on the optimization of rolled-up microcoils (RUMs) for NMR spectroscopy, with the goal to produce high-resolution and, most importantly, high-sensitivity microcoils. The performance of the microcoil can be expressed in three parameters, namely the spectral linewidth, the (normalized) limit of detection and the damping of a nutation curve, which was not a key parameter for this thesis. Both the microcoil design and the roll-up process have an influence on the quality of a RUM.
For an optimal roll-up process, the polymeric bilayer layout needed some adjustment. The rolling process itself was improved through an addition of supporting structures on top of the bilayer, which resulted in tightly rolled tubes with a well-defined diameter. The coil layout was selected from several simple layouts. This layout was then optimized with the help of experiments and simulations. For example, an improvement in resolution was achieved through a reduction of the susceptibility of the metal.
Finally, the coil was embedded into a microfluidic chip. This chip allows an easy sample supply into the coil interior and protects the coil from damage. As a side effect, the chip has a positive influence on the resolution of the detector.
The best RUMs have a volume of only 1.5 nl, show a linewidth of only 8 ppb and a normalized limit of detection of 0.6 nmol√Hz at 600 MHz. The achieved resolution and sensitivity allow to resolve a 1H ethanol spectrum fully in a single measurement of 6 s duration. Compared to a standard shimmed NMR detector, where the linewidth is 0.65 ppb and the nLOD 10 nmol√Hz, the RUMs linewidth still needs some improvement, but the limit of detection is already an order of magnitude smaller. Combined with the fact that the limit of detection improves with linewidth, this shows the far superior sensitivity of RUMs compared to standard setups. A comparison with literature is also very promising, where optimized RUMs compete with the best published microcoils. Additionally, RUMs can be produced en masse, with, at the moment, four coils fitting on a single 50 x 50 mm2 glass substrate, while the best other microcoils were all made for single, specific experiments one at a time. And finally, the here presented recipe for self-assembled, RUMs is easily adaptable to even smaller sample volumes and to other coil layouts. It can be used to produce matching gradient coil systems and is a guideline on how to combine NMR and other techniques while maintaining a high NMR performance.:Introduction
Nuclear magnetic resonance
1 NMR principle
1.1 A single nucleus in a magnetic field
1.2 Multiple spins in external field
1.3 Spins in natura
1.4 Typical liquid state spectrum
1.5 Typical NMR setup
2 Properties of an NMR detector
2.1 Quality of rf-field
2.2 Resolution
2.3 Signal-to-noise ratio
2.4 How to optimize a microcoil
3 Existing microdetectors
3.1 Solenoids
3.2 Saddle coils
3.3 Flat coils
3.4 Striplines/Microslots
4 Comparing microdetectors
4.1 The limit of detection
4.2 Performance of published microcoils
Self-assembly
5 What is self-assembly?
6 Self-assembly in microfabrication
6.1 Macroscopic self-assembly
6.2 Self-rolled tubes
7 Self-assembly of rolled-up microcoils
7.1 Working principle
7.2 Experimental methods for self-assembly
8 Encapsulating rolled-up tubes
8.1 Microfluidics
8.2 Microfluidic chip
8.3 Experimental methods for encapsulation
Rolled-up microcoils
9 Fabrication
9.1 Bilayer
9.2 Coil geometry
9.3 Metal stack
9.4 Supporting elements
9.5 Rolling process
9.6 Final layout
9.7 Microfluidic integration
10 Reducing susceptibility-induced field distortions
10.1 Simulating field distortions
10.2 Influence of the coil shape
10.3 Susceptibility matching
11 NMR performance
11.1 Measurement setup
11.2 Quality of rf-field
11.3 Resolution and sensitivity
11.4 Comparison to published microcoils
12 Outlook
12.1 Further improvements to rf-field, FWHM and nLOD
12.2 New coil shapes
12.3 New applications
Summary
Appendix
A Simulation and maths
A.1 Filling factor and rf-homogeneity
A.2 Nutation and rf-homogeneity
A.3 FT of one-sided exponential
A.4 DFT
A.5 Programs
B Protocols
B.1 Polymeric platform
B.2 Metal layers
C Test protocols
C.1 Wet etching
D Calculations for nLODs
|
Page generated in 0.0875 seconds