• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 57
  • 16
  • 11
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 269
  • 269
  • 243
  • 102
  • 73
  • 62
  • 59
  • 50
  • 40
  • 36
  • 31
  • 30
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A semi-supervised approach to dialogue act classification using K-Means+HMM / En delvis övervakad metod för klassificering av dialoghandlingar: K-Means+HMM

Sigova, Elizaveta January 2016 (has links)
Dialogue act (DA) classification is an important step in the process of developing dialog systems. DA classification is a problem usually solved by supervised machine learning (ML) approaches that all require hand labeled data. Since hand labeling data is a resource-intensive task, many have proposed to focus on unsupervised or semi-supervised ML approaches to solve the problem of DA classification. This master’s thesis explores a novel method for semi-supervised approach to DA classification: K-Means+HMM. The method combines K- Means and Hidden Markov Model (HMM) modeling in addition to abstracting away the words in the utterances to their part-of-speech (POS) tags and the utterances to their cluster labels produced by K-Means prior to HMM training. The focus are the following hypotheses: H1) incorporating context of the utterances leads to better results (HMM is a method specifically used for sequential data and thus incorporates context, while K-Means does not); H2) increasing the number of clusters in K-Means+HMM leads to better results; H3) increasing the number of examples of cluster labels and hand labeled DAs pairs in K-Means+HMM leads to better results (the examples of pairs are used to create the emission probabilities used to define the HMM). One of the conclusions is that K-Means performs better than K-Means+HMM (the result for K-Means measured with one-to-one accuracy is 35.0%, while the result for K-Means+HMM is 31.6%) given 14 clusters and one example pair. However, when the number of examples is increased to 15 the result is 40.5% for K-Means+HMM; the biggest improvement is when the number of examples is increased to 20 resulting in 44% one-to-one accuracy. That is, K-Means+HMM outperforms K-Means provided that a certain number of examples is given. Another conclusion is that the number of examples has a much larger impact on the results - compared to the number of clusters - thus perhaps concluding that the statement “there is no data like labeled data” holds. / Klassificering av dialoghandlingar är ett viktigt steg i processen för utveckling av dialogsystem. Klassificering av dialoghandlingar är ett problem som vanligtvis löses med hjälp av övervakade maskininlärningsmetoder som alla behöver uppmärkt data. Eftersom uppmärkning av data är en resurskrävande uppgift har många föreslagit att fokusera på oövervakade eller delvis övervakade maskininlärningsmetoder för att lösa problemet av klassificering av dialoghandlingar. Denna masteruppsats utforskar en ny delvis övervakad maskininläningsmetod för klassificering av dialoghandlingar: K-Means+HMM. Föru- tom att metoden kombinerar K-Means och Hidden Markiv Model (HMM) modellering, abstraheras orden i yttranden till deras ordklasstaggar och yttranden till deras klusteretiketter som produceras av K-Means före HMM träningen. Projektets fokus är följande tre hypoteser: H1) en intergration av yttrandenas kontext leder till ett bättre resultat (HMM är en metod som används specifikt för sekventiell data och den integrerar således kontexten, medan K-Means gör inte det); H2) ökning av antalet kluster i K- Means+HMM leder till bättre resultat; H3) ökning av antalet exempel av par av klusteretiketter och dialoghandligar uppmärkta för hand i K- Means+HMM leder till bättre resultat (parexemplen används för att skapa emissionssannolikheter som definierar HMM). En av slutsatserna är att K-Means presterar bättre än K-Means+HMM (resultatet för K-means mätt med en-till-en noggrannhet är 35,0%, medan resultatet för K-Means+HMM är 31,6%) givet 14 kluster och ett exempelpar. Däremot, när antalet av exempelpar ökar till 15 ökar resultatet för K-Means+HMM till 40,5%. Den största ökningen är när antalet exempelpar är 20, vilket ger ett resulat på 44% en-till-en noggrannhet. Med andra ord, presterar K-Means+HMM bätre än K-Means då att ett visst antal exempelpar är tillgängligt. En annan slutsats är att antalet av exempelpar har en mycket större effekt på resultaten jämfört med antalet kluster, vilket då möjligtvis leder till slutsatsen att “det finns ingen bättre data än uppmärkt data”.
92

Semi-supervised Sentiment Analysis for Sentence Classification

Tsakiri, Eirini January 2022 (has links)
In our work, we deploy semi-supervised learning methods to perform Sentiment Analysis on a corpus of sentences, meant to be labeled as either happy, neutral, sad, or angry. Sentence-BERT is used to obtain high-dimensional embeddings for the sentences in the training and testing sets, on which three classification methods are applied: the K-Nearest Neighbors classifier (KNN), Label Propagation, and Label Spreading. The latter two are graph-based classifying methods that are expected to provide better predictions compared to the supervised KNN, due to their ability to propagate labels of known data to similar (and spatially close) unknown data. In our study, we experiment with multiple combinations of labeled and unlabeled data, various hyperparameters, and 4 distinct classes of data, and we perform both binary and fine-grained classification tasks. A custom Radial Basis Function kernel is created for this study, in which Euclidean distance is replaced with Cosine Similarity, in order to correspond to the metric used in SentenceBERT. It is found that, for 2 out of 4 tasks, and more specifically 3-class and 2-class classification, the two graph-based algorithms outperform the chosen baseline, although the scores are not significantly higher. The supervised KNN classifier performs better for the second 3-class classification, as well as the 4-class classification, especially when using embeddings of lower dimensionality. The conclusions drawn from the results are, firstly, that the dataset used is most likely not quite suitable for graph creation, and, secondly, that larger volumes of labeled data should be used for further interpretation.
93

<b>MOUSE SOCIAL BEHAVIOR CLASSIFICATION USING SELF-SUPERVISED LEARNING TECHNIQUES</b>

Sruthi Sundharram (18437772) 27 April 2024 (has links)
<p dir="ltr">Traditional methods of behavior classification on videos of mice often rely on manually annotated datasets, which can be labor-intensive and resource-demanding to create. This research aims to address the challenges of behavior classification in mouse studies by leveraging an algorithmic framework employing self-supervised learning techniques capable of analyzing unlabeled datasets. This research seeks to develop a novel approach that eliminates the need for extensive manual annotation, making behavioral analysis more accessible and cost-effective for researchers, especially those in laboratories with limited access to annotated datasets.</p>
94

Harnessing the Power of Self-Training for Gaze Point Estimation in Dual Camera Transportation Datasets

Bhagat, Hirva Alpesh 14 June 2023 (has links)
This thesis proposes a novel approach for efficiently estimating gaze points in dual camera transportation datasets. Traditional methods for gaze point estimation are dependent on large amounts of labeled data, which can be both expensive and time-consuming to collect. Additionally, alignment and calibration of the two camera views present significant challenges. To overcome these limitations, this thesis investigates the use of self-learning techniques such as semi-supervised learning and self-training, which can reduce the need for labeled data while maintaining high accuracy. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field. / Master of Science / This thesis presents a new method for efficiently estimating the gaze point of drivers while driving, which is crucial for understanding driver behavior and improving transportation safety. Traditional methods require a lot of labeled data, which can be time-consuming and expensive to obtain. This thesis proposes a self-learning approach that can learn from both labeled and unlabeled data, reducing the need for labeled data while maintaining high accuracy. By training the model on labeled data and using its own estimations on unlabeled data to improve its performance, the proposed approach can adapt to new scenarios and improve its accuracy over time. The proposed method is evaluated on the DGAZE dataset and achieves a 57.2\% improvement in performance compared to the previous methods. Overall, this approach offers a more efficient and cost-effective solution that can potentially help improve transportation safety by providing a better understanding of driver behavior. This approach can prove to be a valuable tool for studying visual attention in transportation research, leading to more cost-effective and efficient research in this field.
95

Learning with Constraint-Based Weak Supervision

Arachie, Chidubem Gibson 28 April 2022 (has links)
Recent adaptations of machine learning models in many businesses has underscored the need for quality training data. Typically, training supervised machine learning systems involves using large amounts of human-annotated data. Labeling data is expensive and can be a limiting factor in using machine learning models. To enable continued integration of machine learning systems in businesses and also easy access by users, researchers have proposed several alternatives to supervised learning. Weak supervision is one such alternative. Weak supervision or weakly supervised learning involves using noisy labels (weak signals of the data) from multiple sources to train machine learning systems. A weak supervision model aggregates multiple noisy label sources called weak signals in order to produce probabilistic labels for the data. The main allure of weak supervision is that it provides a cheap yet effective substitute for supervised learning without need for labeled data. The key challenge in training weakly supervised machine learning models is that the weak supervision leaves ambiguity about the possible true labelings of the data. In this dissertation, we aim to address the challenge associated with training weakly supervised learning models by developing new weak supervision methods. Our work focuses on learning with constraint-based weak supervision algorithms. Firstly, we will propose an adversarial labeling approach for weak supervision. In this method, the adversary chooses the labels for the data and a model learns by minimising the error made by the adversarial model. Secondly, we will propose a simple constrained based approach that minimises a quadratic objective function in order to solve for the labels of the data. Next we explain the notion of data consistency for weak supervision and propose a data consistent method for weakly supervised learning. This approach combines weak supervision labels with features of the training data to make the learned labels consistent with the data. Lastly, we use this data consistent approach to propose a general approach for improving the performance of weak supervision models. In this method, we combine weak supervision with active learning in order to generate a model that outperforms each individual approach using only a handful of labeled data. For each algorithm we propose, we report extensive empirical validation of it by testing it on standard text and image classification datasets. We compare each approach against baseline and state-of-the-art methods and show that in most cases we match or outperform the methods we compare against. We report significant gains of our method on both binary and multi-class classification tasks. / Doctor of Philosophy / Machine learning models learn to make predictions from data. In supervised learning, a machine learning model is fed data and corresponding labels for the data so that the model can learn to predict labels for new unseen test data. Curation of large fully supervised datasets is expensive and time consuming since it involves subject matter experts providing labels for each individual data example. The cost of collecting labels has become one of the major roadblocks for training machine learning models. An alternative to supervised training of machine learning models is weak supervision. Weak supervision or weakly supervised learning trains with cheap, and easy to define signals that noisily label the data. We refer to these signals as weak signals. A weak supervision model combines various weak signals to produce training labels for the data. The key challenge in weak supervision is how to combine the different weak signals while navigating misleading correlations in their errors. In this dissertation, we propose several algorithms for weakly supervised learning. We classify our methods as constraint-based weak supervision since weak supervision is provided as constraints to our algorithms. We use experiments on different text and image classification datasets to show that our methods are effective and outperform competing methods that we compare against. Lastly, we propose a general framework for improving the performance of weak supervision models by incorporating a few labeled data. With this method we are able to close the gap to supervised learning without the need for labeling all the data examples.
96

Semi-supervised learning for joint visual odometry and depth estimation

Papadopoulos, Kyriakos January 2024 (has links)
Autonomous driving has seen huge interest and improvements in the last few years. Two important functions of autonomous driving is the depth and visual odometry estimation.Depth estimation refers to determining the distance from the camera to each point in the scene captured by the camera, while the visual odometry refers to estimation of ego motion using images recorded by the camera. The algorithm presented by Zhou et al. [1] is a completely unsupervised algorithm for depth and ego motion estimation. This thesis sets out to minimize ambiguity and enhance performance of the algorithm [1]. The purpose of the mentioned algorithm is to estimate the depth map given an image, from a camera attached to the agent, and the ego motion of the agent, in the case of the thesis, the agent is a vehicle. The algorithm lacks the ability to make predictions in the true scale in both depth and ego motion, said differently, it suffers from ambiguity. Two extensions of the method were developed by changing the loss function of the algorithm and supervising ego motion. Both methods show a remarkable improvement in their performance and reduced ambiguity, utilizing only the ego motion ground data which is significantly easier to access than depth ground truth data
97

Semi-supervised and transductive learning algorithms for predicting alternative splicing events in genes.

Tangirala, Karthik January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Doina Caragea / As genomes are sequenced, a major challenge is their annotation -- the identification of genes and regulatory elements, their locations and their functions. For years, it was believed that one gene corresponds to one protein, but the discovery of alternative splicing provided a mechanism for generating different gene transcripts (isoforms) from the same genomic sequence. In the recent years, it has become obvious that a large fraction of genes undergoes alternative splicing. Thus, understanding alternative splicing is a problem of great interest to biologists. Supervised machine learning approaches can be used to predict alternative splicing events at genome level. However, supervised approaches require large amounts of labeled data to produce accurate classifiers. While large amounts of genomic data are produced by the new sequencing technologies, labeling these data can be costly and time consuming. Therefore, semi-supervised learning approaches that can make use of large amounts of unlabeled data, in addition to small amounts of labeled data are highly desirable. In this work, we study the usefulness of a semi-supervised learning approach, co-training, for classifying exons as alternatively spliced or constitutive. The co-training algorithm makes use of two views of the data to iteratively learn two classifiers that can inform each other, at each step, with their best predictions on the unlabeled data. We consider three sets of features for constructing views for the problem of predicting alternatively spliced exons: lengths of the exon of interest and its flanking introns, exonic splicing enhancers (a.k.a., ESE motifs) and intronic regulatory sequences (a.k.a., IRS motifs). Naive Bayes and Support Vector Machine (SVM) algorithms are used as based classifiers in our study. Experimental results show that the usage of the unlabeled data can result in better classifiers as compared to those obtained from the small amount of labeled data alone. In addition to semi-supervised approaches, we also also study the usefulness of graph based transductive learning approaches for predicting alternatively spliced exons. Similar to the semi-supervised learning algorithms, transductive learning algorithms can make use of unlabeled data, together with labeled data, to produce labels for the unlabeled data. However, a classification model that could be used to classify new unlabeled data is not learned in this case. Experimental results show that graph based transductive approaches can make effective use of the unlabeled data.
98

Analyse et reconnaissance des émotions lors de conversations de centres d'appels / Automatic emotions recognition during call center conversations

Vaudable, Christophe 11 July 2012 (has links)
La reconnaissance automatique des émotions dans la parole est un sujet de recherche relativement récent dans le domaine du traitement de la parole, puisqu’il est abordé depuis une dizaine d’années environs. Ce sujet fait de nos jours l’objet d’une grande attention, non seulement dans le monde académique mais aussi dans l’industrie, grâce à l’augmentation des performances et de la fiabilité des systèmes. Les premiers travaux étaient fondés sur des donnés jouées par des acteurs, et donc non spontanées. Même aujourd’hui, la plupart des études exploitent des séquences pré-segmentées d’un locuteur unique et non une communication spontanée entre plusieurs locuteurs. Cette méthodologie rend les travaux effectués difficilement généralisables pour des informations collectées de manière naturelle.Les travaux entrepris dans cette thèse se basent sur des conversations de centre d’appels, enregistrés en grande quantité et mettant en jeu au minimum 2 locuteurs humains (un client et un agent commercial) lors de chaque dialogue. Notre but est la détection, via l’expression émotionnelle, de la satisfaction client. Dans une première partie nous présentons les scores pouvant être obtenus sur nos données à partir de modèles se basant uniquement sur des indices acoustiques ou lexicaux. Nous montrons que pour obtenir des résultats satisfaisants une approche ne prenant en compte qu’un seul de ces types d’indices ne suffit pas. Nous proposons pour palier ce problème une étude sur la fusion d’indices de types acoustiques, lexicaux et syntaxico-sémantiques. Nous montrons que l’emploi de cette combinaison d’indices nous permet d’obtenir des gains par rapport aux modèles acoustiques même dans les cas ou nous nous basons sur une approche sans pré-traitements manuels (segmentation automatique des conversations, utilisation de transcriptions fournies par un système de reconnaissance de la parole). Dans une seconde partie nous remarquons que même si les modèles hybrides acoustiques/linguistiques nous permettent d’obtenir des gains intéressants la quantité de données utilisées dans nos modèles de détection est un problème lorsque nous testons nos méthodes sur des données nouvelles et très variées (49h issus de la base de données de conversations). Pour remédier à ce problème nous proposons une méthode d’enrichissement de notre corpus d’apprentissage. Nous sélectionnons ainsi, de manière automatique, de nouvelles données qui seront intégrées dans notre corpus d’apprentissage. Ces ajouts nous permettent de doubler la taille de notre ensemble d’apprentissage et d’obtenir des gains par rapport aux modèles de départ. Enfin, dans une dernière partie nous choisissons d’évaluées nos méthodes non plus sur des portions de dialogues comme cela est le cas dans la plupart des études, mais sur des conversations complètes. Nous utilisons pour cela les modèles issus des études précédentes (modèles issus de la fusion d’indices, des méthodes d’enrichissement automatique) et ajoutons 2 groupes d’indices supplémentaires : i) Des indices « structurels » prenant en compte des informations comme la durée de la conversation, le temps de parole de chaque type de locuteurs. ii) des indices « dialogiques » comprenant des informations comme le thème de la conversation ainsi qu’un nouveau concept que nous nommons « implication affective ». Celui-ci a pour but de modéliser l’impact de la production émotionnelle du locuteur courant sur le ou les autres participants de la conversation. Nous montrons que lorsque nous combinons l’ensemble de ces informations nous arrivons à obtenir des résultats proches de ceux d’un humain lorsqu’il s’agit de déterminer le caractère positif ou négatif d’une conversation / Automatic emotion recognition in speech is a relatively recent research subject in the field of natural language processing considering that the subject has been proposed for the first time about ten years ago. This subject is nowadays the object of much attention, not only in academia but also in industry, thank to the increased models performance and system reliability. The first studies were based on acted data and non spontaneous speech. Up until now, most experiments carried out by the research community on emotions were realized pre-segmented sequences and with a unique speaker and not on spontaneous speech with several speaker. With this methodology the models built on acted data are hardly usable on data collected in natural context The studies we present in this thesis are based on call center’s conversation with about 1620 hours of dialogs and with at least two human speakers (a commercial agent and a client) for each conversation. Our aim is the detection, via emotional expression, of the client satisfaction.In the first part of this work we present the results we obtained from models using only acoustic or linguistic features for emotion detection. We show that to obtain correct results an approach taking into account only one of these features type is not enough. To overcome this problem we propose the combination of three type of features (acoustic, lexical and semantic). We show that the use of models with features fusion allows higher score for the recognition step in all case compared to the model using only acoustic features. This gain is also obtained if we use an approach without manual pre-processing (automatic segmentation of conversation, transcriptions based on automatic speech recognition).In the second part of our study we notice that even if models based on features combination are relevant for emotion detection the amount of data we use in our training set is too small if we used it on large amount of data test. To overcome this problem we propose a new method to automatically complete training set with new data. We base this selection on linguistic and acoustic criterion. These new information are issued from 100 hours of data. These additions allow us to double the amount of data in our training set and increase emotion recognition rate compare to the non-enrich models. Finally, in the last part we choose to evaluate our method on entire conversation and not only on conversations turns as in most studies. To define the classification of a dialog we use models built on the previous steps of this works and we add two new features group:i) structural features including information like the length of the conversation, the proportion of speech for each speaker in the dialogii) dialogic features including informations like the topic of a conversation and a new concept we call “affective implication”. The aim of the affective implication is to represent the impact of the current speaker’s emotional production on the other speakers. We show that if we combined all information we can obtain results close to those of humans
99

Ensemble multi-label learning in supervised and semi-supervised settings / Apprentissage multi-label ensembliste dans le context supervisé et semi-supervisé

Gharroudi, Ouadie 21 December 2017 (has links)
L'apprentissage multi-label est un problème d'apprentissage supervisé où chaque instance peut être associée à plusieurs labels cibles simultanément. Il est omniprésent dans l'apprentissage automatique et apparaît naturellement dans de nombreuses applications du monde réel telles que la classification de documents, l'étiquetage automatique de musique et l'annotation d'images. Nous discutons d'abord pourquoi les algorithmes multi-label de l'etat-de-l'art utilisant un comité de modèle souffrent de certains inconvénients pratiques. Nous proposons ensuite une nouvelle stratégie pour construire et agréger les modèles ensemblistes multi-label basés sur k-labels. Nous analysons ensuite en profondeur l'effet de l'étape d'agrégation au sein des approches ensemblistes multi-label et étudions comment cette agrégation influece les performances de prédictive du modèle enfocntion de la nature de fonction cout à optimiser. Nous abordons ensuite le problème spécifique de la selection de variables dans le contexte multi-label en se basant sur le paradigme ensembliste. Trois méthodes de sélection de caractéristiques multi-label basées sur le paradigme des forêts aléatoires sont proposées. Ces méthodes diffèrent dans la façon dont elles considèrent la dépendance entre les labels dans le processus de sélection des varibales. Enfin, nous étendons les problèmes de classification et de sélection de variables au cadre d'apprentissage semi-supervisé. Nous proposons une nouvelle approche de sélection de variables multi-label semi-supervisée basée sur le paradigme de l'ensemble. Le modèle proposé associe des principes issues de la co-training en conjonction avec une métrique interne d'évaluation d'importnance des varaibles basée sur les out-of-bag. Testés de manière satisfaisante sur plusieurs données de référence, les approches développées dans cette thèse sont prometteuses pour une variété d'ap-plications dans l'apprentissage multi-label supervisé et semi-supervisé. Testés de manière satisfaisante sur plusieurs jeux de données de référence, les approches développées dans cette thèse affichent des résultats prometteurs pour une variété domaine d'applications de l'apprentissage multi-label supervisé et semi-supervisé / Multi-label learning is a specific supervised learning problem where each instance can be associated with multiple target labels simultaneously. Multi-label learning is ubiquitous in machine learning and arises naturally in many real-world applications such as document classification, automatic music tagging and image annotation. In this thesis, we formulate the multi-label learning as an ensemble learning problem in order to provide satisfactory solutions for both the multi-label classification and the feature selection tasks, while being consistent with respect to any type of objective loss function. We first discuss why the state-of-the art single multi-label algorithms using an effective committee of multi-label models suffer from certain practical drawbacks. We then propose a novel strategy to build and aggregate k-labelsets based committee in the context of ensemble multi-label classification. We then analyze the effect of the aggregation step within ensemble multi-label approaches in depth and investigate how this aggregation impacts the prediction performances with respect to the objective multi-label loss metric. We then address the specific problem of identifying relevant subsets of features - among potentially irrelevant and redundant features - in the multi-label context based on the ensemble paradigm. Three wrapper multi-label feature selection methods based on the Random Forest paradigm are proposed. These methods differ in the way they consider label dependence within the feature selection process. Finally, we extend the multi-label classification and feature selection problems to the semi-supervised setting and consider the situation where only few labelled instances are available. We propose a new semi-supervised multi-label feature selection approach based on the ensemble paradigm. The proposed model combines ideas from co-training and multi-label k-labelsets committee construction in tandem with an inner out-of-bag label feature importance evaluation. Satisfactorily tested on several benchmark data, the approaches developed in this thesis show promise for a variety of applications in supervised and semi-supervised multi-label learning
100

Classificadores baseados em vetores de suporte gerados a partir de dados rotulados e não-rotulados. / Learning support vector machines from labeled and unlabeled data.

Oliveira, Clayton Silva 30 March 2006 (has links)
Treinamento semi-supervisionado é uma metodologia de aprendizado de máquina que conjuga características de treinamento supervisionado e não-supervisionado. Ela se baseia no uso de bases semi-rotuladas (bases contendo dados rotulados e não-rotulados) para o treinamento de classificadores. A adição de dados não-rotulados, mais baratos e geralmente disponíveis em maior quantidade do que os dados rotulados, pode aumentar o desempenho e/ou baratear o custo de treinamento desses classificadores (a partir da diminuição da quantidade de dados rotulados necessários). Esta dissertação analisa duas estratégias para se executar treinamento semi-supervisionado, especificamente em Support Vector Machines (SVMs): formas direta e indireta. A estratégia direta é atualmente mais conhecida e estudada, e permite o uso de dados rotulados e não-rotulados, ao mesmo tempo, em tarefas de aprendizagem de classificadores. Entretanto, a inclusão de muitos dados não-rotulados pode tornar o treinamento demasiadamente lento. Já a estratégia indireta é mais recente, sendo capaz de agregar os benefícios do treinamento semi-supervisionado direto com tempos menores para o aprendizado de classificadores. Esta opção utiliza os dados não-rotulados para pré-processar a base de dados previamente à tarefa de aprendizagem do classificador, permitindo, por exemplo, a filtragem de eventuais ruídos e a reescrita da base em espaços de variáveis mais convenientes. Dentro do escopo da forma indireta, está a principal contribuição dessa dissertação: idealização, implementação e análise do algoritmo split learning. Foram obtidos ótimos resultados com esse algoritmo, que se mostrou eficiente em treinar SVMs de melhor desempenho e em períodos menores a partir de bases semi-rotuladas. / Semi-supervised learning is a machine learning methodology that mixes features of supervised and unsupervised learning. It allows the use of partially labeled databases (databases with labeled and unlabeled data) to train classifiers. The addition of unlabeled data, which are cheaper and generally more available than labeled data, can enhance the performance and/or decrease the costs of learning such classifiers (by diminishing the quantity of required labeled data). This work analyzes two strategies to perform semi-supervised learning, specifically with Support Vector Machines (SVMs): direct and indirect concepts. The direct strategy is currently more popular and studied; it allows the use of labeled and unlabeled data, concomitantly, in learning classifiers tasks. However, the addition of many unlabeled data can lead to very long training times. The indirect strategy is more recent; it is able to attain the advantages of the direct semi-supervised learning with shorter training times. This alternative uses the unlabeled data to pre-process the database prior to the learning task; it allows denoising and rewriting the data in better feature espaces. The main contribution of this Master thesis lies within the indirect strategy: conceptualization, experimentation, and analysis of the split learning algorithm, that can be used to perform indirect semi-supervised learning using SVMs. We have obtained promising empirical results with this algorithm, which is efficient to train better performance SVMs in shorter times from partially labeled databases.

Page generated in 0.0712 seconds