• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 31
  • 16
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 21
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Shade trees in cacao agroforestry systems: influence on roots and net primary production

Abou Rajab, Yasmin Joana Monna 10 December 2015 (has links)
No description available.
132

Modelling lucerne (Medicago sativa L.) crop response to light regimes in an agroforestry system

Varella, Alexandre Costa January 2002 (has links)
The general goal of this research was to understand the agronomic and physiological changes of a lucerne crop in distinct physical radiation environments and to verify the potential of lucerne to grow under shaded conditions. To achieve this, the research was conducted in four main steps: (i) firstly, experimental data collection in the field using two artificial shade materials (shade cloth and wooden slats) under inigated and non-irrigated conditions; (ii) a second experiment with data collection in a typical temperate dryland agroforestry area under non-irrigated conditions; (iii) generation of a light interception sub-model suitable for shaded crops and (iv) a linkage between the light interception sub-model and a canopy photosynthesis model for agroforestry use. In experiments 1 and 2, lucerne crop was exposed to 6 different light regimes: full sunlight (FS), shade cloth (FS+CL), wooden slats (FS+SL), trees (T), trees+cloth (T +CL) and trees+slats (T+SL). The FS+SL structure produced a physical radiation environment (radiation transmission, radiation periodicity and spectral composition) that was similar to that observed in the agroforestry site (f). The mean annual photosynthetic photon flux density (PPFD) was 41 % under the FS+CL, 44% under FS+SL and 48% under T compared with FS in clear sky conditions. Plants were exposed to an intermittent (sun/shade) regime under both FS+SL and T, whereas under FS+CL the shaded light regime was continuous. The red to far-red (RIFR) ratio measured during the shade period under the slats was 0.74 and under the trees was 0.64. However, R/FR ratio increased to 1.26 and 1.23 during the illuminated period under FS+SL and T, respectively, and these were equivalent to the ratio of 1.28 observed under the FS+CL and 1.31 in FS. The radiation use efficiency (RUE) of shoots increased under the 5 shaded treatments compared with full sunlight. The pattern of radiation interception was unchanged by radiation flux, periodicity and spectral composition and all treatments had a mean extinction coefficient of 0.82. However, the magnitude of the decrease in canopy growth was less than those in PPFD transmissivity. The mean lucerne annual dry matter (DM) yield was 17.5 t ha⁻¹ in FS and 10 t ha⁻¹ under the FS+CL, FS+SL and T regimes. This declined to 3.4 t DM ha⁻¹ under T+CL (22% PPFD transmissvity) and 4.1 t DM ha⁻¹ under T+SL (23% transmissivity). A similar pattern of response was observed for leaf net photosynthesis (Pn) rates under the shade treatments compared with full sun. In addition, spectral changes observed under the trees and slats affected plant motphology by increasing the number of long stems, stem height and internode length compared with full sunlight. Thus, there were two main explanations for the increase in RUE under shade compared with full sun: (i) preferential partition of assimilates to shoot rather than root growth and/or (ii) leaves under shade were still operating at an efficient part of the photosynthetic light curve. The changes proposed for the canopy Pn model were appropriate to simulate the radiation environment of an agroforestry system. However, the model underestimated DM yields under the continuous and intermittent shade regimes. These were considered to be mainly associated with plant factors, such as overestimation in maintenance respiration and partitioning between shoots and roots in shade and the intermittency light effect on leaf Pn rates. Further investigation in these topics must be addressed to accurately predict crop yield in agroforestry areas. Overall, the lucerne crop responded typically as a sun-adapted plant under shade. It was concluded that lucerne yield potential to grow under intermediate shade was superior to most of C3 pastures previously promoted in the literature.
133

Untersuchungen zu Spinnengemeinschaften in Kakaoagroforstsystemen in Indonesien: Diversität, Netzdichte und räumlich-zeitlicher Artenaustausch / Spider communities in Indonesian cacao agroforestry: diversity, web density and spatio-temporal turnover

Stenchly, Kathrin 23 July 2010 (has links)
No description available.
134

Modelling lucerne (Medicago sativa L.) crop response to light regimes in an agroforestry system

Varella, Alexandre Costa January 2002 (has links)
The general goal of this research was to understand the agronomic and physiological changes of a lucerne crop in distinct physical radiation environments and to verify the potential of lucerne to grow under shaded conditions. To achieve this, the research was conducted in four main steps: (i) firstly, experimental data collection in the field using two artificial shade materials (shade cloth and wooden slats) under inigated and non-irrigated conditions; (ii) a second experiment with data collection in a typical temperate dryland agroforestry area under non-irrigated conditions; (iii) generation of a light interception sub-model suitable for shaded crops and (iv) a linkage between the light interception sub-model and a canopy photosynthesis model for agroforestry use. In experiments 1 and 2, lucerne crop was exposed to 6 different light regimes: full sunlight (FS), shade cloth (FS+CL), wooden slats (FS+SL), trees (T), trees+cloth (T +CL) and trees+slats (T+SL). The FS+SL structure produced a physical radiation environment (radiation transmission, radiation periodicity and spectral composition) that was similar to that observed in the agroforestry site (f). The mean annual photosynthetic photon flux density (PPFD) was 41 % under the FS+CL, 44% under FS+SL and 48% under T compared with FS in clear sky conditions. Plants were exposed to an intermittent (sun/shade) regime under both FS+SL and T, whereas under FS+CL the shaded light regime was continuous. The red to far-red (RIFR) ratio measured during the shade period under the slats was 0.74 and under the trees was 0.64. However, R/FR ratio increased to 1.26 and 1.23 during the illuminated period under FS+SL and T, respectively, and these were equivalent to the ratio of 1.28 observed under the FS+CL and 1.31 in FS. The radiation use efficiency (RUE) of shoots increased under the 5 shaded treatments compared with full sunlight. The pattern of radiation interception was unchanged by radiation flux, periodicity and spectral composition and all treatments had a mean extinction coefficient of 0.82. However, the magnitude of the decrease in canopy growth was less than those in PPFD transmissivity. The mean lucerne annual dry matter (DM) yield was 17.5 t ha⁻¹ in FS and 10 t ha⁻¹ under the FS+CL, FS+SL and T regimes. This declined to 3.4 t DM ha⁻¹ under T+CL (22% PPFD transmissvity) and 4.1 t DM ha⁻¹ under T+SL (23% transmissivity). A similar pattern of response was observed for leaf net photosynthesis (Pn) rates under the shade treatments compared with full sun. In addition, spectral changes observed under the trees and slats affected plant motphology by increasing the number of long stems, stem height and internode length compared with full sunlight. Thus, there were two main explanations for the increase in RUE under shade compared with full sun: (i) preferential partition of assimilates to shoot rather than root growth and/or (ii) leaves under shade were still operating at an efficient part of the photosynthetic light curve. The changes proposed for the canopy Pn model were appropriate to simulate the radiation environment of an agroforestry system. However, the model underestimated DM yields under the continuous and intermittent shade regimes. These were considered to be mainly associated with plant factors, such as overestimation in maintenance respiration and partitioning between shoots and roots in shade and the intermittency light effect on leaf Pn rates. Further investigation in these topics must be addressed to accurately predict crop yield in agroforestry areas. Overall, the lucerne crop responded typically as a sun-adapted plant under shade. It was concluded that lucerne yield potential to grow under intermediate shade was superior to most of C3 pastures previously promoted in the literature.
135

Vliv zvýšené koncentrace CO2 a ozářenosti na kvantitativní parametry mezofylových buněk smrku ztepilého / The effect of elevated CO2 concentration and irradiation on quantitative parameters of mesophyll cells of Norway spruce

Kubínová, Zuzana January 2010 (has links)
KUBÍNOVÁ, Zuzana. The effect of elevated CO2 concentration and irradiation on quantitative parameters of mesophyll cells of Norway spruce. Prague, 2010. 74 p. Master's degree thesis. Faculty of Science, Charles University in Prague. Abstract The aim of the present thesis was to choose and adjust a suitable methodology for counting particles in 3D space, which would be suitable for unbiased estimation of chloroplast number in needle mesophyll cells. The disector method was used for the first time to determine the number of chloroplasts. This method enables unbiased estimation of chloroplast number in needle volume from optical sections captured from fresh free-hand sections by confocal microscope. The sections did not need any pre-processing. Another aim was to compare selected photosynthetic and anatomical characteristics of sun and shade Norway spruce needles, which were grown under different CO2 concentration. The trees were grown for eight years in ambient (during the experiment increasing from 357 up to 370 µmol CO2 ∙ mol-1 ) CO2 concentration or elevated (700 µmol ∙ mol-1 ) CO2 concentration in special glass domes on an experimental research site of the Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic at Bílý Kříž in Moravskoslezské Beskydy mountains. The sun needles...
136

Climate Change Affects Leaf Morphology: Investigating Mechanism and Variation Across Species

Thomas, Michael D. 11 July 2022 (has links)
No description available.
137

Funktionelle Vielfalt von Hymenopteren entlang eines Gradienten agroforstlicher Nutzung in Indonesien / Functional diversity of Hymenoptera along a gradient of agroforestry management in Indonesia

Höhn, Patrick 15 November 2007 (has links)
No description available.
138

TREE MITIGATION STRATEGIES TO REDUCE THE EFFECT OF URBAN HEAT ISLANDS IN CENTER TOWNSHIP, IN

Rigg, Michelle C. 11 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The purpose of this study was to identify urban heat island locations within Center Township, Indiana and to develop a model to determine areas of high social vulnerability. In addition, an urban heat island mitigation strategy was developed for socially vulnerable and highest temperature locations. Land surface temperature was estimated using Landsat ETM+ satellite imagery. Social vulnerability was estimated using principal components analysis and spatial analysis methods such as kernel density functions. These methods incorporate various socioeconomic variables, land surface temperature, and tree canopy cover. Tree canopy cover was extracted using Quickbird imagery among other techniques. Areas with high social vulnerability, high temperature and low tree canopy cover were analyzed and plantable spaces were assessed. The findings of this study will be shared with Keep Indianapolis Beautiful, Inc. so that they can inform their tree planting campaigns that seek to reduce the effects of urban heat islands on socially vulnerable populations.
139

Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yield

Maas, Bea 20 November 2013 (has links)
No description available.

Page generated in 0.0465 seconds