• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 45
  • 19
  • 13
  • 12
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 217
  • 35
  • 20
  • 18
  • 18
  • 15
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Operation Trojan Shield : Om rättsstridig bevisinhämtning och utrymmet att beakta den omständigheten i strafflindrande riktning / Operation Trojan Shield : Unlawfully Obtained Evidence and its Consideration Regarding Sentence Reductions

Lindvall, Annie January 2022 (has links)
No description available.
92

Links Between Eruptive Styles, Magmatic Evolution, and Morphology of Low-Shield Volcanoes: Snake River Plain, Idaho

Barton, Katelyn J. 10 July 2020 (has links)
In this study, connections between chemical composition, eruption style, and topographic features of two shield volcanoes on the Snake River Plain, Idaho are examined. These relationships may then be applied to understanding silicate volcanic features throughout the inner solar system. Despite their similar ages and geographic locations, two young basaltic shield volcanoes—Kimama Butte (87 Ka) and Rocky Butte (95 Ka)—have strikingly different topographic profiles. The Kimama Butte shield has a diameter of 9 km and a height of 210 m. In contrast, Rocky Butte has a broad 36 km topographic shield that rises 140 m with less than 1° slopes. The vent crater at Rocky Butte developed as a large lava blister inflated and then collapsed forming a crater in which a lava lake developed. Little spatter accumulated throughout the eruption. In contrast, high spatter mounds and spatter-fed flows flank the main summit crater at Kimama Butte. Major- and trace-element compositions of the basaltic lavas are similar at the two shields, but distinct in Ni and Al2O3. The lavas range in TiO2 concentrations from 2.6–4.5 wt.% for Kimama Butte and 2.6–4.3 wt.% for Rocky Butte. These ranges can be related to magma evolution by fractional crystallization involving plagioclase and olivine without clinopyroxene. Compositions of the pre-eruptive phenocrysts are also similar at both shields but show variation with evolution. Olivine cores in the more primitive lavas are more Mg-rich (Fo80-72) than those in the evolved rocks (Fo65-55). Plagioclase cores are similarly more calcic in the more primitive flows (An78-68) than in the evolved ones (An65-52). Like other olivine-tholeiites on the Snake River Plain, the fO2 and fH2O were probably low with fO2 at -2△QFM and 0.1 wt.% H2O. Pressure of crystallization estimated from MELTS models is less than 3 kbar (~10 km deep). Calculated temperatures and magma viscosities overlap at both Kimama Butte (1226 to1147°C and 158 to14 Pa·s) and Rocky Butte (1251 to 1145°C and 75 to 8 Pa·s). However, Kimama Butte magma viscosities extend ~80 Pa·s higher than those for Rocky Butte lavas. The higher magma viscosities are the result of higher phenocryst proportions in spatter and spatter-fed lavas concentrated near the vent. Because lava temperature, volatile content, and chemical composition overlap at the two volcanoes, they are probably not important controls of shield-volcano morphology. This suggests that steep-capped shields are not created as a simple function of having more silicic lavas. Melt viscosities are also similar, but Rocky Butte lacks the phenocryst-rich (>30 vol %), higher magma viscosity lavas and the high spatter ramparts that form the cap at Kimama Butte. Thus, we conclude that eruption style and phenocryst content play the most important role in developing a low-shield volcano summit. Where eruptions shifted from lava lake overflow and tube development to late fountaining with short spatter-fed phenocryst-rich flows, steeper, higher shields develop.
93

New Zircon geochronological and Nd isotopic evidence for Neoproterozoic crust reworking events in the Abas terrane, Yemen

Yeshanew, Fitsum Girum January 2014 (has links)
The Arabian-Nubian Shield is an excellent natural laboratory to study crust formation processes during the Neoproterozoic. It is one of the largest juvenile tracts of continental crust formed during this time. It diachronously evolved between the breakup of Rodinia (c.780 Ma) and amalgamation of Gondwana (c.550 Ma). New SIMS zircon U-Pb, whole-rock Sm-Nd isotopic and geochemical data are presented. The results are used to establish the geochronology of the Abas terrane and constrain its crustal evolution. The U-Pb data show bimodal age distribution: an older age group c. 790-760 Ma, which corresponds to the arc-forming stage of the ANS and a younger group c. 625-590 Ma, belonging to post-collisional episode in the region. The oldest sample in the post-collisional tectonomagmatic group is slightly deformed indicating that pervasive deformation in the area was decaying by c. 625 Ma. The inherited zircons documented range in age from Meso-to-Paleoproterozoic. Although few, these inherited zircons indicate that crust material of that age was assimilated during the Neoproterozoic magmatic events. The U-Pb geochronologic also resolved the temporal transition from high-K calc-alkaline to alkaline magmatism in the post-collisional suits. This transition commonly marks the end of orogeny. Almost all samples studied exhibit a strongly enriched initial εNd compositions and Nd model ages that predate the crystallization ages of the rocks by several hundred million years. These features highlight the sharp contrast in the magmatic sources between the Abas granitoids and the rest of the ANS, which is dominantly juvenile except that of the Afif terrane of Saudi Arabia. This suggests that the Abas terrane of Yemen had a distinctive crustal evolution history compared to the rest of the shield and these features provide evidence for the presence of pre-Neoproterozoic crust at depth in this region.
94

"Fallen angels" : an historical review of program development and clientele of the Salvation Army White Shield Home with an emphasis on the years 1940-1976

Ballard, Wendy Jo 01 January 1978 (has links)
The following paper is a study of the history of the Salvation Army White Shield Home of Portland, Oregon with emphasis on the years 1940 through 1976. The White Shield Home is a residential program which provides comprehensive services to school-age parents. A complete description of the setting and the services offered is found in Chapter II. “School-age parents” is the current term used to refer to unmarried pregnant women and women with infants in an effort to eliminate the stigma attached to “unwed mother” or “pregnant teenager”. The purpose of the study is threefold: 1) to familiarize the reader with trends that occurred within the White Shield Home in regard to both agency and client, and allow the reader an appreciation of the various aspects of the Home; 2) to enhance the reader's awareness of the services provided by the Home and how each service came to be, in an effort to suggest the value of the Home to Portland and surrounding areas; and 3) to provide the basis for further study of White Shield Home.
95

Water Storage Dynamics in Peat-Filled Depressions of the Canadian Shield Rock Barrens: Implications for Primary Peat Formation

Didemus, Benjamin January 2016 (has links)
Northern peatlands have acted as persistent sinks of CO2 throughout the Holocene largely owing to their ability to maintain shallow water table depths that limit decomposition rates and supports the growth of keystone vegetation including Sphagnum mosses. There is concern, however, that the future success and ecosystem function of these northern peat deposits may be at risk to climate change, where temperatures and evaporation rates are predicted to increase substantially in the next century. While numerous studies have examined the hydrology and carbon dynamics in large expansive peatland systems where a water table (WT) is ever-present, relatively little research has been done on small scale peat-accumulating systems where their vulnerability remains unknown. One region where a broad spectrum in the scale of peat accumulation is present is in the bedrock depressions of Canadian Shield rock barrens, which are of special importance as many peat deposits here provide habitat to species at risk including the Blanding’s Turtle and the Massassauga Rattlesnake. This study examines the controls that govern water storage dynamics and moss water availability in 18 different peat-accumulating depressions that vary in size, catchment area, and sediment composition. The magnitude of WT variability was often several times greater in shallower bedrock depressions (<50 cm deep) as compared to deeper ‘bogs’ (>60 cm deep). The magnitude of depression WT variability appeared to be closely linked to the WT depth (WTD), the relative proportions of different sediment types within the depression, and the depth dependant specific yield (Sy) of each sediment type. Sites which contained large fractions of Polytrichum moss or mineral soil – which were more common in shallow depressions ¬¬– had the greatest WT variability due to the lower porosity and Sy of this sediment as compared to Sphagnum peat. Sphagnum dominated ‘vernal pools’ (30-50 cm deep) had a WT variability two to three times greater than Sphagnum dominated bogs at WTDs > 20-25 cm, which may be related to exceptionally high ash concentrations near the base of vernal pools which reduced peat porosity and Sy as compared to more organic-rich peat. As compared to bogs, pits (<15 cm deep) and vernal pools had greater rates of WT decline during drying intervals, deeper average WTDs when a WT was present, and extended periods of WT absence during the summer months. As such, moss growing in pits and vernal pools generally had lower near-surface water availability as compared to bogs, though the importance of depression depth in determining the timing of moss stress is also dependant on the hydrophysical properties (Kunsat and moisture retention) of the moss species in question. WT dynamics and moss water availability were generally weakly correlated to depression catchment size, although during wetter periods of the year the rate of WT recession was moderated in pits and vernal pools which had an upslope depression that could provide sustained water inputs for multiple days after rainfall. The results of this study suggest that depression depth may be a first order control in determining peatland vulnerability to future regime shifts induced by external forcings or disturbances. Furthermore, this study suggests that systematic differences may exist between the hydrophysical properties of peat in shallow vs. large bedrock depressions, potentially resulting from contrasts in fire frequency/severity, and/or the degree of humification/compression among geological settings. / Thesis / Master of Science (MSc) / Canada is home to one of the largest reservoirs of organic carbon stored on land in the world, in unique ecosystems called peatlands. Peatlands are formed in wetland environments where a thick layer of organic matter has accumulated over time due to the average rate of vegetation growth on the surface of peatlands exceeding the rate of decomposition of the underlying organic matter. This net accumulation of organic matter over time has caused peatlands to act as a long term sink of carbon dioxide, which is a greenhouse gas that is a primary driver of global warming. The ability of peatlands to have slow decomposition rates and support the growth of key peatland vegetation, most notably various species of ‘peat moss’, is highly dependent upon their ability to keep their water table (i.e. the surface below which pore spaces in the organic matter are saturated with water) close to their growing surface. There is concern, however, that a warmer and dryer climate in the future could cause deeper water table positions in peatlands, thereby increasing decomposition rates, decreasing the growth rate of peat moss, and potentially turning peatlands into a net source of carbon dioxide. Most peatland studies to date, however, have focused on water storage/movement and carbon exchange in large, deep peatland systems, whereas relatively little research has been conducted on smaller peatlands. As such, the vulnerability of these smaller peatlands to future climate change remains uncertain. One region where peatlands exist over a wide range of different sizes and landscape positions is in bedrock depressions of the Canadian Shield, which are of special interest as they also provide habitat for species at risk including the Blanding’s Turtle and the Massassauga Rattlesnake. This study looked at how the water table positions and water availability to different species of peat moss compared over the growing season between 18 peatlands of different sizes and landscape position (i.e. peatlands with a relatively ‘small’ and ‘large’ area upslope of them). This study finds that deeper peatlands (with organic matter layers > 60 cm deep) usually had a shallower water table over the summer months than shallower peatlands (< 50 cm deep), primarily due to differences in the properties of the organic matter underlying their growing surfaces. Furthermore, each of the 12 studied peatlands < 50 cm deep lost their water table for a considerable amount of time during the summer (when their water table position dropped below the underlying bedrock of the depression), whereas each of the six peatlands > 60 cm deep had a water table present for the entire growing season. Surprisingly, a peatland’s position on the landscape seemed to have a relatively minor effect on determining the depth/presence of its water table. As deeper peatlands usually had a water table that was closer to the growing surface and was always present, more moisture was available to the peat moss growing at their surface than for peat moss in shallower depressions, though this moisture availability also depended upon the growth form of the different species of peat moss (some species of peat moss were better at accessing subsurface water than others). Through its impact on water table positions and moisture availability for peat moss, peatland depth is likely a primary control governing peatland vulnerability climate change, with shallower peatlands being more vulnerable to warmer and dryer conditions in the future.
96

Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to the Mapping of Minerals associated with Hydrothermally Altered Rocks in the Zara Gold Prospects, Eritrea, NE Africa

Tedros, Benhur Bahta 03 March 2011 (has links)
No description available.
97

Designing the Popularity of the Dalkon Shield

Goldberg, Kathryn 22 May 2012 (has links)
No description available.
98

Development of a Modified Anthropomorphic Test Device for the Quantification of Behind Shield Blunt Impacts / Quantification of Loading for Behind Shield Blunt Impacts

Steinmann, Noah January 2020 (has links)
Ballistic shields are used by defense teams in dangerous situations as protection against threats such as gunfire. When a ballistic shield is struck, the shield material will deform to absorb the kinetic energy of the incoming projectile. The rapid back-face deformation of the shield can contact the arm, which can impart a large force over an extremely short duration. This work modified an Anthropomorphic Test Device (ATD) to be used for the characterization of behind ballistic shield blunt impact loading profiles. The modified ATD was instrumented to measure impacts at the hand, wrist, forearm, and elbow to compare the force transfer at different locations of impact. A custom jig was designed to support the ATD behind a ballistic shield, provide a high degree of adjustability, and be subjected to impact testing. Two ballistic shield models, both with the same protection rating, were tested and showed to have statistically different responses to the same impact conditions, indicating further need for shield safety evaluation. To apply these loading profiles to future injury criteria development tests, a pneumatic impacting apparatus was re-designed that will allow the high energy impact profiles to be re-created in the McMaster Injury Biomechanics lab. Understanding the ballistic impact conditions, as well as the response of different ballistic shield models provided insight into the possible methods available to reduce upper extremity injury risk. This work has provided essential data for informing a future standard for shield safety evaluation. / Thesis / Master of Applied Science (MASc) / When a ballistic shield is impacted by a bullet it deforms to absorb the incoming energy. The high-speed deformation of the shield material can impact the arm leading to fracture and possible life-threatening risks if the shield is dropped due to this injury. At the time of this work, there were no standards that limited the amount of allowable back-face deflection or tools available that could measure the force transferred to the arm in this scenario. The purpose of this work was to develop a measurement device that could measure the force transferred to the arm from the behind shield impact. An existing crash test dummy arm was modified to provide measurement capabilities for this loading scenario. Ballistic shield testing was conducted where two different ballistic shield models were impacted to observe how the impact force changed with shield design, as well as the distance the device was placed behind the shield. A pneumatic impacting apparatus was then re-designed in the McMaster Injury Biomechanics lab that will allow the ballistic impact conditions to be re-created for evaluating the injury tolerance of the arm. The results of this work will be used to inform the future development of a ballistic shield evaluation standard.
99

Automated Solar Panel Shield : An IoT Approach

Rangannagari, Raghu Vamsi Sai, Deverakonda, Sri Phani January 2022 (has links)
Context: Solar panels are exposed to different weather conditions and get damaged. Sand storms and hail storms could cause serious damage. However, they need to be used for human survival in almost every harsh condition possible. Objectives: Our goal is to design and create a working prototype of an automated solar panel shield. The meteorological conditions around the solar panels should be monitored, including wind speed, air quality, rain, and humidity. The shield automatically protects the solar panel based on the sensor data. The solar shield should even protect panels from harm from small animals. Methods: A microcontroller Arduino Uno is used. Various sensors are used to monitor multiple weather conditions, including an ultrasonic sensor, a rain sensor, a smoke sensor, and a custom-built anemometer. Based on daylight status, the stepper motor is activated to roll up the protective cover over the solar panel. Results: The output from all the sensors and actuators is verified. The values of the sensors are updated in the web application, the user can use that. The web application is used to monitor the weather conditions around solar panels. Conclusions: An working model of the shield is made, in addition, a cleaning system is made. A bird deterring system is also included. All the additional sensors for monitoring can be used for performance automation.
100

A Shield in the Sky: The Vertical Geopolitics of Transcontinental Air Defense

Davitch, James Michael 04 May 2023 (has links)
Doctor of Philosophy / Traditional military descriptions of conflict tend to focus on the movement of soldiers and armies across battlefields. When the airplane emerged, it forced military theorists to contend with a new, vertical, dimension of conflict. In America, the United States Air Force assumed an important role in this vertical dimension as the country's delivery mechanism for nuclear weapons. However, at the same time that politicians, academics, and military officials debated the offensive uses for aircraft a second debate occurred describing how best to use military means to defend the North American continent. Those who advocated for a defensive system to protect North American, including the President Eisenhower, strongly advocated for a continent-wide test of the new air defense system. That test was conducted once a year between 1960 and 1962 during which all civilian air travel across the U.S. and Canada was suspended. The tests were called the "Sky Shield" exercises. This research shows how a prevailing mood of fear and vulnerability gave air defense proponents the political capital to build a continental air defense network and test it during the Sky Shield exercises. Further, it describes the enduring legacy of this domestically-focused Cold War defense program. The research finds that America's approach to Cold War continental defense was strong when it was aligned with the White House's nuclear strategy, but when successive political leaders changed nuclear strategies that decision negatively influenced continental defense programs. This research is useful because it examines a relatively under-explored area of Cold War defense programs. Traditionally these studies focus on offensive capabilities far from American shores. This study instead examines homeland defense and how it changed during the Cold War as a function of changing nuclear programs and changing threats to the United States.

Page generated in 0.0333 seconds