• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 17
  • 15
  • 14
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Integral Traces of Weak Maass Forms of Genus Zero Odd Prime Level

Green, Nathan Eric 02 July 2013 (has links) (PDF)
Duke and Jenkins defined a family of linear maps from spaces of weakly holomorphic modular forms of negative integral weight and level 1 into spaces of weakly holomorphic modular forms of half integral weight and level 4 and showed that these lifts preserve the integrality of Fourier coefficients. We show that the generalization of these lifts to modular forms of genus 0 odd prime level also preserves the integrality of Fourier coefficients.
32

The mixed Ax-Lindemann theorem and its applications to the Zilber-Pink conjecture / Le théorème d’Ax-Lindemann mixte et ses applications à la conjecture de Zilber-Pink

Gao, Ziyang 24 November 2014 (has links)
La conjecture de Zilber-Pink est une conjecture diophantienne concernant les intersections atypiques dans les variétés de Shimura mixtes. C’est une généralisation commune de la conjecture d’André-Oort et de la conjecture de Mordell-Lang. Le but de cette thèse est d’étudier Zilber-Pink. Plus concrètement, nous étudions la conjecture d’André-Oort, selon laquelle une sous-variété d’une variété de Shimura mixte est spéciale si son intersection avec l’ensemble des points spéciaux est dense, et la conjecture d’André-Pink-Zannier, selon laquelle une sous-variété d’une variété de Shimura mixte est faiblement spéciale si son intersection avec une orbite de Hecke généralisée est dense. Cette dernière conjecture généralise Mordell-Lang comme expliqué par Pink.Dans la méthode de Pila-Zannier, un point clef pour étudier la conjecture de Zilber-Pink est de démontrer le théorème d’Ax-Lindemann qui est une généralisation du théorème classique de Lindemann-Weierstrass dans un cadre fonctionnel. Un des résultats principaux de cette thèse est la démonstration du théorème d’Ax-Lindemann dans sa forme la plus générale, c’est- à-dire le théorème d’Ax-Lindemann mixte. Ceci généralise les résultats de Pila, Pila-Tsimerman, Ullmo-Yafaev et Klingler-Ullmo-Yafaev concernant Ax-Lindemann pour les variétés de Shimura pures.Un autre résultat de cette thèse est la démonstration de la conjecture d’André-Oort pour une grande collection de variétés de Shimura mixtes : in- conditionnellement pour une variété de Shimura mixte arbitraire dont la par- tie pure est une sous-variété de AN6 (par exemple les produits des familles universelles des variétés abéliennes de dimension 6 et le fibré de Poincaré sur A6) et sous GRH pour toutes les variétés de Shimura mixtes de type abélien. Ceci généralise des théorèmes connus de Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman et Ullmo pour les variétés de Shimura pures.Quant à la conjecture d’André-Pink-Zannier, nous démontrons plusieurs cas valables lorsque la variété de Shimura mixte ambiante est la famille universelle des variétés abéliennes. Tout d’abord nous démontrons l’intersection d’André-Oort et André-Pink-Zannier, c’est-à-dire que l’on étudie l’orbite de Hecke généralisée d’un point spécial. Ceci généralise des résultats d’Edixhoven-Yafaev et Klingler-Ullmo-Yafaev pour Ag. Nous prouvons ensuite la conjecture dans le cas suivant : une sous-variété d’un schéma abélien au dessus d’une courbe est faiblement spéciale si son intersection avec l’orbite de Hecke généralisée d’un point de torsion d’une fibre non CM est Zariski dense. Finalement pour une orbite de Hecke généralisée d’un point algébrique arbitraire, nous démontrons la conjecture pour toutes les courbes. Ces deux derniers cas généralisent des résultats de Habegger-Pila et Orr pour Ag.Dans toutes les démonstrations, la théorie o-minimale, en particulier le théorème de comptage de Pila-Wilkie, joue un rôle important. / The Zilber-Pink conjecture is a diophantine conjecture concerning unlikely intersections in mixed Shimura varieties. It is a common generalization of the André-Oort conjecture and the Mordell-Lang conjecture. This dissertation is aimed to study the Zilber-Pink conjecture. More concretely, we will study the André-Oort conjecture, which predicts that a subvariety of a mixed Shimura variety having dense intersection with the set of special points is special, and the André-Pink-Zannier conjecture which predicts that a subvariety of a mixed Shimura variety having dense intersection with a generalized Hecke orbit is weakly special. The latter conjecture generalizes the Mordell-Lang conjecture as explained by Pink.In the Pila-Zannier method, a key point to study the Zilber-Pink conjec- ture is to prove the Ax-Lindemann theorem, which is a generalization of the functional analogue of the classical Lindemann-Weierstrass theorem. One of the main results of this dissertation is to prove the Ax-Lindemann theorem in its most general form, i.e. the mixed Ax-Lindemann theorem. This generalizes results of Pila, Pila-Tsimerman, Ullmo-Yafaev and Klingler-Ullmo-Yafaev concerning the Ax-Lindemann theorem for pure Shimura varieties.Another main result of this dissertation is to prove the André-Oort conjecture for a large class of mixed Shimura varieties: unconditionally for any mixed Shimura variety whose pure part is a subvariety of AN6 (e.g. products of universal families of abelian varieties of dimension 6 and the Poincaré bundle over A6) and under GRH for all mixed Shimura varieties of abelian type. This generalizes existing theorems of Klinger-Ullmo-Yafaev, Pila, Pila-Tsimerman and Ullmo concerning pure Shimura varieties.As for the André-Pink-Zannier conjecture, we prove several cases when the ambient mixed Shimura variety is the universal family of abelian varieties. First we prove the overlap of André-Oort and André-Pink-Zannier, i.e. we study the generalized Hecke orbit of a special point. This generalizes results of Edixhoven-Yafaev and Klingler-Ullmo-Yafaev for Ag. Secondly we prove the conjecture in the following case: a subvariety of an abelian scheme over a curve is weakly special if its intersection with the generalized Hecke orbit of a torsion point of a non CM fiber is Zariski dense. Finally for the generalized Hecke orbit of an arbitrary algebraic point, we prove the conjecture for curves. These generalize existing results of Habegger-Pila and Orr for Ag.In all these proofs, the o-minimal theory, in particular the Pila-Wilkie counting theorems, plays an important role.
33

Sur quelques questions d'équidistribution en géométrie arithmétique

Richard, Rodolphe 19 November 2009 (has links) (PDF)
Nous démontrons un résultat d'équidistribution sur les courbes modulaires: les orbites galoisiennes d'invariants modulaires a l'intérieur d'une même classe d'isogénie non~CM se répartissent le long de la mesure de Poincaré sur la courbe modulaire. Un corollaire est que la hauteur des points considérés diverge, retrouvant là un résultat de Szpiro et Ullmo. Pour obtenir cet énoncé nous combinons des propriétés galoisiennes (le théorème de Serre sur l'action du groupe de Galois sur les points de division) et des propriétés ergodiques (le théorème de Ratner sur les flots unipotents dans les espaces de réseaux, ou plutôt l'équidistribution des points de Hecke). Nous généralisons notre méthode dans le cadre des variétés de Shimura. Dans ce cadre, en~revanche, l'un de nos ingrédients repose sur une forme de la conjecture de Mumford-Tate. Cela nous amène à étudier, dans une seconde partie, des raffinements de l'équidistribution des points de Hecke. Apparaissent alors certaines questions de divergence dans les espaces de réseaux. La méthode de linéarisation de Dani-Margulis ramène cette question à un énoncé géométrique. Nous apportons une réponse à cette question. Dans le cas réel, il s'agit d'une collaboration avec Nimish Shah. Dans le cas p-adique, nous sommes amenés à utiliser la géométrie ultramétrique récemment développée par Berkovich, en relation avec la théorie de Bruhat-Tits, et plus particulièrement des résultats recents de B. Remy, A. Thuillier et A. Werner. Nous sommes amenés en particulier à démontrer - des propriétés de décomposition des immeubles inspirées des théorème de décomposition de Mostow sur les espaces symétriques; - des propriétés de convexité sur les immeubles de fonctions analytiques, au sens ultramétrique, sur le groupe associé. Nous illustrons enfin comment nos résultats, en combinaison avec les travaux de D. Kleinbock et G. Tomanov, et le théorème de Ratner, s'appliquent à l'étude de problèmes S-arithmétiques dans les espaces de réseaux.
34

Sur les cohomologies des variétés de Griffiths-Schmid du groupe SU(2,2).

Charbord, Benjamin 04 March 2010 (has links) (PDF)
Dans cette thèse, on s'intéresse, sous deux aspects différents, à la cohomologie des variétés de Griffiths-Schmid attachées à une forme anisotrope du groupe SU(2,2). Ces variétés ont l'avantage, au contraire des variétés de Shimura, de parfois faire apparaître dans leur cohomologie des limites dégénérées de séries discrètes. La première partie étudie ce phénomène dans le cas des limites totalement dégénérées. On prouve que les classes attachées à ces représentations peuvent s'exprimer comme cup-produits d'autres classes attachées à des séries discrètes. La seconde partie étudie les liens entre deux différentes variétés de Griffiths-Schmid obtenues à partir de deux structures complexes. L'une est celle considérée dans la première partie, et l'autre est fibrée holomorphiquement sur une variété de Shimura. On prouve l'existence d'une application bijective entre certains espaces de cohomologie, en s'appuyant sur une interprétation en termes de fonctions holomorphes de la cohomologie de Dolbeault. Ce résultat est généralisé dans l'annexe aux cas des groupes SU(n,n) et SU(n+1,n).
35

La conjecture d'André-Pink : orbites de Hecke et sous-variétés faiblement spéciales

Orr, Martin 25 September 2013 (has links) (PDF)
La conjecture d'André-Pink affirme qu'une sous-variété d'une variété de Shimura ayant une intersection dense avec une orbite de Hecke est faiblement spéciale. On démontre cette conjecture dans le cas de courbes dans une variété de Shimura de type abélien, ainsi que dans certains cas de sous-variétés de dimension supérieure. Ceci est un cas spécial de la conjecture de Zilber-Pink. C'est une généralisation de théorèmes d'Edixhoven et Yafaev quand l'orbite de Hecke se compose de points spéciaux, de Pink quand l'orbite de Hecke se compose de points Galois génériques, et de Habegger et Pila quand la variété de Shimura est un produit de courbes modulaires. Notre démonstration de la conjecture d'André-Pink pour les courbes dans l'espace de modules des variétés abéliennes principalement polarisées est basée sur la méthode de Pila et Zannier, utilisant une variante forte du théorème de comptage de Pila-Wilkie. On obtient les bornes galoisiennes requises grâce au théorème d'isogénie de Masser et Wüstholz. Afin de relier les bornes sur les isogénies aux hauteurs, on démontre également diverses bornes concernant l'arithmétique des formes hermitiennes sur l'anneau d'endomorphismes d'une variété abélienne. Afin d'étendre le résultat sur la conjecture d'André-Pink aux courbes dans les variétés de Shimura de type abélien et à certains cas de sous-variétés de dimension supérieure, on étudie les propriétés fonctorielles de plusieurs variantes des orbites de Hecke. Un chapitre concerne les rangs des groupes de Mumford-Tate de variétés abéliennes complexes. On y démontre une minoration de ces rangs en fonction de la dimension de la variété abélienne, étant donné que ses sous-variétés abéliennes simples sont deux à deux non isogènes.
36

Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1)

Koskivirta, Jean-Stefan 07 May 2013 (has links) (PDF)
Blasius et Rogawski ont formulé une conjecture qui prévoit que l'action du Frobenius sur la cohomologie d'une variété de Shimura est annulée par un certain polynôme, à coefficients dans l'algèbre de Hecke. C'est l'analogue de la célèbre relation d'Eichler-Shimura pour la courbe modulaire. Dans cette thèse, on démontre cette conjecture pour les variétés de Shimura associées aux groupes unitaires en signature (n-1,1) quand n est impair. Par ailleurs, on étudie certains aspects dans le cas particulier n=3. On montre explicitement la relation de congruence sur le lieu ordinaire. De plus, on étudie le graphe des cristaux supersinguliers et les relèvements d'isogénies en caractéristique nulle.
37

Relation de congruence pour les variétés de Shimura associées aux groupes unitaires GU (n-1,1)

Koskivirta, Jean-Stefan 07 May 2013 (has links) (PDF)
Blasius et Rogawski ont formulé une conjecture qui prévoit que l'action du Frobenius sur la cohomologie d'une variété de Shimura est annulée par un certain polynôme, à coefficients dans l'algèbre de Hecke. C'est l'analogue de la célèbre relation d'Eichler-Shimura pour la courbe modulaire. Dans cette thèse, on démontre cette conjecture pour les variétés de Shimura associées aux groupes unitaires en signature (n-1,1) quand n est impair. Par ailleurs, on étudie certains aspects dans le cas particulier n=3. On montre explicitement la relation de congruence sur le lieu ordinaire. De plus, on étudie le graphe des cristaux supersinguliers et les relèvements d'isogénies en caractéristique nulle.
38

O-minimality, nonclassical modular functions and diophantine problems

Spence, Haden January 2018 (has links)
There now exists an abundant collection of conjectures and results, of various complexities, regarding the diophantine properties of Shimura varieties. Two central such statements are the Andre-Oort and Zilber-Pink Conjectures, the first of which is known in many cases, while the second is known in very few cases indeed. The motivating result for much of this document is the modular case of the Andre-Oort Conjecture, which is a theorem of Pila. It is most commonly viewed as a statement about the simplest kind of Shimura varieties, namely modular curves. Here, we tend instead to view it as a statement about the properties of the classical modular j-function. It states, given a complex algebraic variety V, that V contains only finitely many maximal special subvarieties, where a special variety is one which arises from the arithmetic behaviour of the j-function in a certain natural way. The central question of this thesis is the following: what happens if in such statements we replace the j-function with some other kind of modular function; one which is less well-behaved in one way or another? Such modular functions are naturally called nonclassical modular functions. This question, as we shall see, can be studied using techniques of o-minimality and point-counting, but some interesting new features arise and must be dealt with. After laying out some of the classical theory, we go on to describe two particular types of nonclassical modular function: almost holomorphic modular functions and quasimodular functions (which arise naturally from the derivatives of the j-function). We go on to prove some results about the diophantine properties of these functions, including several natural Andre-Oort-type theorems, then conclude by discussing some bigger-picture questions (such as the potential for nonclassical variants of, say, Zilber-Pink) and some directions for future research in this area.
39

P-adic local Langlands correspondence and geometry / Langlands p-adique : géometrie et programme

Chojecki, Przemyslaw 16 January 2015 (has links)
Cette these concerne la geometrie de la correspondance de Langlands p-adique. On donne la formalisation des methodes de Emerton, qui permettrait d'etablir la conjecture de Fontaine-Mazur dans le cas general des groupes unitaires. Puis, on verifie que ce formalism est satisfait dans la cas de U(3) ou on utilise la construction de Breuil-Herzig pour la correspondence p-adique. De point de vue local, on commence l'etude de cohomologie modulo p et p-adiques de tour de Lubin-Tate pour GL_2(Q_p). En particulier, on demontre que on peut retrouver la correspondence de Langlands p-adique dans la cohomologie completee de tour de Lubin-Tate. / This thesis concerns the geometry behind the p-adic local Langlands correspondence. We give a formalism of methods of Emerton, which would permit to establish the Fontaine-Mazur conjecture in the general case for unitary groups. Then, we verify that our formalism works well in the case of U(3) where we use the construction of Breuil-Herzig as the input for the p-adic correspondence.From the local viewpoint, we start a study of the modulo p and p-adic cohomology of the Lubin-Tate tower for GL_2(Q_p). In particular, we show that we can find the local p-adic Langlands correspondence in the completed cohomology of the Lubin-Tate tower.
40

P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields / Formule de Gross-Zagier P-adique pour les points de Heegner sur les courbes de Shimura sur corps totalement réels

Ma, Li 30 September 2014 (has links)
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle. / The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero.

Page generated in 0.0371 seconds