• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • Tagged with
  • 13
  • 13
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of active and passive terahertz structures

Kim, Sangcheol. January 2006 (has links)
Thesis (M.E.E.)--University of Delaware, 2006. / Principal faculty advisor: James Kolodzey, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
2

Resource and thermal management in 3D-stacked multi-/many-core systems

Zhang, Tiansheng 10 March 2017 (has links)
Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption. / 2018-03-09T00:00:00Z
3

Intégration en technologie CMOS d'un modulateur plasmonique à effet de champ CMOS Integration of a field effect plasmonic modulator / CMOS Integration of field effect plasmonic modulators

Emboras, Alexandros 10 May 2012 (has links)
Dans la réalisation de circuits intégrés hybrides électroniques - photoniques pour les réseaux télécom, les modulateurs intégrés plasmoniques pourront jouer un role essentiel de codage de l'information en signaux optiques. Cette thése montre la réalisation d'une approche modulateur plasmonique a effet de champ, intégrée en silicium en utilisant les technologies CMOS standards. Ce modulateur MOS plasmonique présente diverses propriétés intéressantes, a savoir un confinement optique fort, permettant une augmentation de l'interaction lumiére matiére. Ces modulateurs plasmoniques permettent aussi de réduire l'inadéquation entre la taille des dispositifs en photonique Si et celle de l' électronique, ce qui permet d'envisager une convergence de leur fabrication en technologie VLSI sur une meme puce. Le modulateur étudié dans ce mémoire repose sur l'accumulation de porteurs dans un condensateur MOS a grille cuivre integer dans un guide d'onde en silicium, nécessitant aux technologies front end et back end Cu d etre combinés de quelques nanométres l'une de l'autre. Nous présentons aussi de nouveaux designs pour injecter de la lumiére a partir de guide d'onde SOI dans un guide a nanostructure plasmonique et les mesures d'une modulation électro-optique dans les structures MOS plasmoniques / Compact and low energy consumption integrated optical modulator is urgently required for encoding information into optical signals. To that respect, the use of plasmon modes to modulate light is of particular interest when compared to the numerous references describing silicon based optical modulators. Indeed, the high field confinement properties of those modes and the increased sensitivity to small refractive index changes of the dielectric close to the metal can help decrease the characteristic length scales of the devices, towards to that of microelectronics.This thesis investigates the realization of Si field-effect plasmonic modulator integrated with a silicon-on insulator waveguide (SOI-WG) using the standard CMOS technology. The material aspects and also the technological steps required in order to realize an integrated plasmonic modulator compatible with requirements of CMOS technology were investigated. First, we demonstrate a Metal-Nitride-Oxide-Semiconductor (MNOS) stack for applications in electro-optical plasmonic devices, so that a very low optical losses and reliable operation is achieved. This objective is met thanks to a careful choice of materials: (i) copper as a metal for supporting the plasmonic mode and (ii) stoechiometric silicon nitride as an ultrathin low optical loss diffusion barrier to the copper. Final electrical reliability is above 95% for a 3 nm thick Si3N4 layer, leakage current density below 10-8 A.cm-2 and optical losses as low as 0.4 dB.μm-1 for a 13 nm thick insulator barrier, in agreement with the losses of the fundamental plasmonic mode estimated by 3D FDTD calculations, using the optical constant of Cu measured from ellipsometry. After demonstrating the MNOS as an appropriate structure for electro-optical CMOS plasmonics, we fabricate a vertical Metal-Insulator-Si-Metal (MISM) waveguide integrated with an SOI-WG, where the back metal was fabricated by flipping and molecular bonding of the original SOI wafer on a Si carrier wafer. The active device area varies from 0.5 to 3 μm2, 0.5 μm width and length varying from 1 to 6 μm.An efficient and simple way to couple light from Si-WG to vertical MISM PWG was experimentally realized by inserting a Metal-Insulator-Si-Insulator (MISI) coupling section between the two waveguides. We demonstrate that such couplers operates at 1.55 μm with the highest efficiency geometry corresponds to a compact length of 0.5 μm with coupling loss of just 2.5 dB (50 %) per facets. This value is 3 times smaller compared to the case of direct coupling (without any MISI section). High-k dielectrics are demonstrated as promising solution to reduce both the MISM absorption loss and the operation voltage. Given that interest, we experimental demonstrate an electrical reliable high-k stack for future applications to the MOS plasmonic modulators.A few μm long plasmonic modulator is experimentally investigated. Devices show leakage current below 10 fA through the copper electrodes based MOS capacitance. The accumulation capacitance (few fF) was found to scale with the surface of the device, in consistent with the expected equivalent oxide thickness of the MOS stack of our modulator. A low electro-absorption (EA) modulation showing capacitive behaviour was experimentally demonstrated in agreement with simulations. Finally, low energy consumption devices 6 fJ per bit was demonstrated.
4

Defect Engineering for Silicon Photonic Applications

Walters, David January 2008 (has links)
<p> The work described in this thesis is devoted to the application of defect engineering in the development of silicon photonic devices. The thesis is divided into simulation and experimental portions, each focusing on a different form of defect engineered silicon: ion implantation induced amorphous silicon and solid-phase epitaxial regrowth suppressed polycrystalline silicon.</p> <p> The simulations are directed at silicon rib waveguide Raman laser applications. It is shown that a uniform, divacancy defect concentration will not enhance Raman gain. The excess optical loss and free carrier lifetime of rib waveguides with remote amorphous silicon volumes were simulated. Net gain was demonstrated depending on the geometry of the structure. For a waveguide structure with rib width, rib height and slab height of W = 1.5, H = 1.5 and h = 0.8 μm respectively, the optimal separation between the edge of the rib and the amorphous region is ~2.0 μm. Surface recombination velocity modification was shown to be an effective means to reduce free carrier lifetime.</p> <p> Experimental work was devoted to the characterization of a novel form of polycrystalline silicon created by amorphizing the entire silicon overlayer of a silicon-on-insulator wafer. Solid-phase epitaxial regrowth of the amorphous silicon is suppressed upon annealing due to the lack of a crystal seed and results in polycrystalline silicon. This material was characterized with ellipsometry, positron annihilation spectroscopy and x-ray diffraction. The material properties are shown to be heavily dependent on the annealing conditions. Ellipsometry showed that the refractive index at 1550 nm is comparable to crystalline silicon. Positron annihilation spectroscopy showed that the polycrystalline material exhibits a high concentration of vacancy-type defects while vertically regrown crystalline silicon does not. X-ray diffraction showed that the polycrystalline silicon is non-textured, strained in tension and is characterized by grain sizes less than 300 nm.</p> <p> Defect etching and optical measurements using a waveguide geometry were performed in order to characterize the lateral regrowth and the optical loss of the polycrystalline material. Lateral regrowth in the [011] direction was 1.53 and 0.96 μm for 10 minute anneals at 750 and 900 °C respectively, and at least 2.5 μm at 650 °C. Waveguide optical loss measurements with adjacent polycrystalline regions separated from the rib by at least 5.5 μm showed no separation dependence. The intrinsic optical loss of the polycrystalline material was estimated to be 1.05 and 1.57 dB/cm for TM and TE polarizations after a 900 °C anneal. Vertically regrown c-Si was shown to exhibit less than 3.0 dB/cm optical loss after annealing at 550 °C .</p> / Thesis / Master of Applied Science (MASc)
5

Conception, fabrication et réalisation de sources lasers hybrides III-V sur silicium

Descos, Antoine 18 December 2014 (has links)
Avec le développement de l’usage d’internet et les nouveaux services tout en ligne, la quantité de données traitée par les data-centers ne cessent de croître. Ainsi, si la mise en parallèle de plusieurs serveurs permet de répondre à cette demande, un problème structurel apparaît. Comme dans les supercalculateurs entre les noeuds de calculs, les données ne circulent plus suffisamment rapidement entre les serveurs sur les câbles électriques classiques. Pour pallier à ce goulot d’étranglement, l’utilisation de l’optique permet d’obtenir des débits plus importants. Si les câbles actifs existants permettent une solution rapide, la photonique sur silicium présente un avantage certain. L’intégration des composants optiques au plus près des puces électroniques permet de réduire considérablement le chemin des interconnexions ainsi que leurs coûts énergétiques. Une chaine de communication optique complète nécessite différents composants. Si les modulateurs, multiplexeurs, coupleurs fibres, démultiplexeurs et photodetecteurs ont déjà été démontrés, les sources lasers utilisées sont toujours extérieures à la puce photonique. Il s’agit en effet du chainon manquant dans l’intégration complète de l’optique grâce à la photonique sur silicium. Plusieurs architectures ont déjà été proposées mais cette thèse s’appuie sur l’intégration hybride d’un matériau III-V sur le silicium. Le travail de cette thèse a consisté en la conception, la fabrication et la caractérisation de sources laser hybrides III-V sur silicium et a été entièrement accompli aux CEA/LETI. L’architecture du LETI d’un guide III-V couplé à un guide silicium a été améliorée grâce à un critère adiabatique pour obtenir une zone active de laser efficace et robuste. Cette architecture a été déclinée en différents types de lasers (Fabry-Pérot, DBR, racetrack et DFB). La fabrication de ces lasers a nécessité des développements de procédés de structuration du matériau III-V reporté sur du silicium dans les laboratoires du CEA/LETI. Les premiers résultats ont permis la validation de l’architecture utilisée. Les lasers DBR présentent des seuils inférieurs à 20mA et des puissances optiques maximales supérieures à 20mW dans le guide silicium. Ces lasers ont également un fonctionnement monomode avec un SMSR de plus de 50dB. Les lasers DFB possèdent quant à eux des seuils de 30mA et des puissances optiques maximales supérieurs à 40mW dans le guide silicium. Ils sont monomodes avec un SMSR de 40dB. Ces résultats sont à l’état de l’art mondial sur les sources lasers hybrides en photonique sur silicium. / With the development of the Internet and the new cloud services, the amount of data processed by data-centers is increasing. Though, if the paralleling of multiple server answer to this growing quantity, a structural problem arises. As in super calculators between nodes calculations, data are not transmitted quickly enough between servers on classical electric cables. This bottleneck can be overcome thanks to the optic which can access greater data rates. If existing active cables allow a quick resolution, silicon photonic has a clear benefit. The integration of the optical components closer to the electronic chips reduces substantially the path of interconnections and their energetic costs.An optical transmitter and receptor need different components. If modulators, multiplexers, fiber coupler, multiplexer and photo-detectors are already achieved, laser sources used are still outside the photonic chip. This is the missing link for a complete optical integration thanks to the silicon photonic. Several architectures have been proposed but this thesis relies on hybrid integration of III-V material on silicon.The work of this thesis consisted on the conception, the fabrication and the characterization of hybrid III-V on Silicon laser sources and was completely done at the CEA/LETI. The LETI architecture composed by a III-V waveguide coupled to a silicon waveguide was improved thanks to a adiabatic criterion to obtain an efficient and robust active area of the laser. This architecture was declined in different kinds of lasers (Fabry-Pérot, DBR, Racetrack and DFB). The fabrication required technological development for the structuration of the reported III-V material on silicon at the laboratories of the CEA/LETI. The first results validates the proposed architectures. The DBR lasers have threshold of less than 20mA and maximal optical power of more than 20mW inside the silicon waveguide. Those lasers are monomode with a SMSR of more than 50dB. The DFB Lasers have threshold of 30mA and maximal optical power of more than 40mW inside the silicon waveguide. They are monomode with SMSR more than 40dB. Those results are world state-of-the-art for hybrids laser sources in silicon photonic.
6

Microeletromechanical Systems for Tunable Ring Resonators on a Silicon Platform

Nguyen, Chris Phong Van January 2021 (has links)
Advancements in photonic integrated circuits, so-called PICs, have progressed fast in the last decades. More complex PICs are getting developed, which are promising in possibly offering advantages like low power consumption and high-performance computing. Re-programmable photonic FPGAs are one of these candidates. To make these PICs viable, fundamental building blocks based on photonics need to be developed. Some of those fundamental building blocks are tunable silicon ring resonators, which can be used to filter signals in the transmission of light through photonic circuits. Fabrication of PICs is developing and those components are getting smaller, which leads to a strong sensitivity of their behavior to nanometer-scale variations. That has created a need for active tuning of those devices to recuperate those variances. One promising way to tune silicon ring resonator devices is to integrate microelectromechanical systems (MEMS) into the tuning section of the devices, because of their local and low power actuation. They are prospective to eliminate drawbacks from usual actuation methods like thermal actuation, which comes with high power consumption and cross talk while heating the functional sections of the ring. In this thesis, we have measured and analyzed MEMS-tunable silicon ring resonators, featuring two different designs, being an all-pass ring resonator and an add-drop ring resonator. The MEMS in the design are used to change the gap between the waveguides in their directional coupler and phase shifter section to control the position and extinction ratios of the ring resonance dips, which has been successfully demonstrated for the all-pass ring resonator. For the add-drop ring resonators, we have obtained performance parameters of their resonances with an average Q-factor of 3000 over the measured wavelength ranged from 1460nm to 1580nm and the characteristic behavior of their transmission has been shown without actuation. Further investigation with MEMS actuation of add-drop ring resonators and passive measurements on all-pass ring resonators can be done for a better understanding of their behavior and functionality. This can be achieved by characterizing all-pass ring resonators in terms of obtained performance parameters and by active measurements on add-drop ring resonators, as we expect that their MEMS could enable similar functionalities as all-pass ring resonators. Our first characterization results confirm the potential of MEMS for ring resonator tuning and could enable future circuits based on ring resonators with low power consumption. / Framsteg inom fotoniska integrerade kretsar, så kallade PIC, har utvecklats snabbt under de senaste decennierna. Mer komplexa PIC utvecklas, vilket lovar att möjligen erbjuda fördelar som låg strömförbrukning och högpresterande datorer. Omprogrammerbara fotoniska FPGA är en av dessa kandidater. För att göra dessa PICs livskraftiga måste grundläggande byggstenar baserade på fotonik utvecklas. Några av dessa grundläggande byggstenar är avstämningsbara kiselringresonatorer, som kan användas för att filtrera signaler vid överföring av ljus genom fotoniska kretsar. Tillverkning av PIC utvecklas och dessa komponenter blir mindre, vilket leder till en stark känslighet för variationer, även på nanometer skala. Det har skapat ett behov av aktiv inställning av dessa enheter för att återhämta dessa avvikelser. Ett lovande sätt att ställa in kiselringresonatoranordningar är att integrera mikroelektromekaniska system (MEMS) i enhetens stämningsdel på grund av deras lokala och lågeffektaktivering. De kan eliminera nackdelar med vanliga manövreringsmetoder som termisk aktivering, som kommer med hög strömförbrukning och termisk överhöring. I denna avhandling har vi mätt och analyserat MEMS-avstämbara kiselringresonatorer, med två olika designer, som är en all-pass ringres-onator och en add-drop ringresonator. MEMS i konstruktionen används för att ändra gapet mellan vågledarna i deras kopplare och fasskiftarsektion för att styra positionen och djupet på ringresonaserna, vilket har visats framgångsrikt för allpassningsresonatorn. För add-dropringresonatorer har vi erhållit prestandaparametrar för deras resonanser med en genomsnittlig Q-faktor på 3000 över den uppmätta våglängden som varierar från 1460 nm till 1580 nm och det karakteristiska beteendet för deras överföring har visats utan aktivering. Ytterligare undersökning med MEMS-aktivering av add-drop-ringresonatorer och passiva mätningar på all-pass-ringresonatorer kan göras för en bättre förståelse av deras beteende och funktionalitet. Detta kan uppnås genom att karakterisera allpassningsresonatorer i termer av erhållna prestandaparametrar och genom aktiva mätningar på add-drop-ringresonatorer, eftersom vi förväntar oss att deras MEMS kan möjliggöra liknande funktioner som all-pass-ringresonatorer. Våra första karakteriseringsresultat bekräftar MEMS potential för ringresonatorinställning och kan möjliggöra framtida kretsar baserade på ringresonatorer med låg strömförbrukning.
7

Microcavités non linéaires en régime d’excitation cohérente / Coherent excitation of nonlinear microcavities

Oden, Jérémy 18 December 2013 (has links)
Les microcavités à grand facteur de qualité et faible volume modal permettent, grâce à un fort effet de confinement de la lumière, le renforcement des interactions lumière-Matière et la réalisation de futurs dispositifs pour le traitement optique de l’information à faible énergie de commande. Ce travail de thèse traite du fonctionnement de microcavités à cristal photonique en régime d’excitation cohérente, basé sur des impulsions dont la relation temps-Fréquence est contrôlée afin de renforcer les interactions non linéaires intracavité.La modélisation de la dynamique non linéaire de ces cavités à l'aide de la théorie des modes couplés, a permis de mettre en avant le rôle des non-Linéarités réfractives sur la réduction des effets de localisation au cours de l'excitation.Nous proposons alors de contrôler la dynamique du champ intracavité par un contrôle de la relation temps-Fréquence des impulsions.Cette excitation dite cohérente, repose sur la mise en œuvre d'un montage de mise en forme d'impulsions, constitué d'un étireur d'impulsions et d'un dispositif de filtrage spectral.La caractérisation non linéaire de nanoguides en silicium a permis, en complément du modèle, la détermination précise des paramètres des impulsions.Nous avons ensuite réalisé la toute première démonstration expérimentale de l'excitation cohérente de microcavités, menant à la fois à un renforcement des interactions non linéaires et une réduction des distorsions subies par les impulsions transmises par la cavité. / High quality factor and small modal volume microcavities allow, thanks to a strong light confinement, an enhancement of light matter interactions and the realization of low energy consumption devices for optical signal processing.In this work, we study the coherent excitation of nonlinear photonic crystal resonators, which is achieved by controlling the pulse time-Frequency relation, enabling nonlinear interaction enhancement.A modeling of the intra-Cavity nonlinear dynamics is conducted using the coupled mode theory, underlying the nonlinear refractive effects contribution in the intra-Cavity pulse energy reduction and distortion.We show that an appropriate pulse time-Frequency relation allow to compensate for the cavity resonance frequency shift, and to maintain the benefit of light localization during the entire excitation.The pulse shaper, made of a pulse-Stretcher combined with a spectral filter, has been specifically designed.Preliminary nonlinear characterizations of silicon nanowires enable to determine the shaped pulses parameters.A very first experimental coherent excitation of an optical resonator is reported, leading to a nonlinear interaction enhancement, and to the control of both the optical bandwidth and nonlinear dynamics of the cavity.
8

Intégration d’un laser hybride DBR III-V/Si en face arrière d’une puce photonique / Integration of an hybrid III-V/Si DBR laser on the Back-Side of a photonic die

Durel, Jocelyn 02 June 2017 (has links)
Ces dernières années, la photonique sur silicium est apparue comme une solution prometteuse pour la fabrication en grande série d'émetteurs-récepteurs optiques répondant aux besoins des centres de données en termes d'augmentation du débit et de coûts réduits. Plusieurs plateformes de photonique sur silicium ont été démontrées en utilisant la technologie Si standard. Bien que ces plateformes diffèrent à bien des égards, elles manquent toutes d'une source de lumière intégrée monolithiquement. Pour résoudre ce problème, l'approche la plus couramment proposée consiste à coller un empilement InP sur une plaque SOI afin de fabriquer un laser hybride III-V/Si. Cependant, aucune des démonstrations n'a été réalisée avec un empilement d’interconnexions métalliques BEOL (Back-End Of Line) standard, empêchant ainsi une intégration électronique-photonique appropriée. Pour résoudre le problème topographique posé par cet ajout de couches, un nouveau schéma d'intégration, appelé intégration Back-Side, a été développé et est présenté dans ce document.Tout d'abord, le contexte de cette étude, un état de l’art ainsi que la présentation du Back-Side est abordé. La nouveauté apportée par cette intégration, à savoir le collage du III-V sur la face arrière du SOI après la structuration de celui-ci, y est alors détaillé.Le bon fonctionnement d’un élément essentiel à la puce photonique, le réseau de couplage, est ensuite abordé à travers des simulations, sa fabrication et des caractérisations optiques. Nous avons prouvé que, sous certaines conditions, ce dispositif possède les mêmes performances mesurées en Back-Side qu’en Front-Side.Le principe de fonctionnement d’une cavité oscillante puis les différents modules composants le laser hybride sont détaillés. Le laser étudié est une cavité hybride DBR (Distributed Bragg Reflector) III-V/Si. Afin d'augmenter le confinement du mode dans le MQWs (Multi Quantum Wells) et donc d'assurer un gain optique élevé, le mode optique est progressivement transféré entre le guide III-V et le guide silicium du laser hybride par des épanouisseurs adiabatiques, structurés dans le SOI de part et d’autre de la zone de gain, pour être enfin réfléchi par les miroirs DBR dans le silicium.Enfin, son processus de fabrication est explicité avant que ses caractérisations opto-électroniques ne soient finalement présentées. Les lasers à pompage électrique ont été testés dans des conditions de courant continu et la lumière générée a été collectée à travers un réseau de couplage par une fibre optique externe multimode. Les pertes de couplage ont été mesurées supérieures à 10 dB. La puissance de sortie est de 1,15 mW à un courant d'injection de 200 mA. Le seuil laser est de 45 mA, ce qui correspond à une densité de courant de 1,5 kA / cm2 et la résistance série des contacts laser est d'environ 9 Ω. La tension de seuil est de 1,45 V. Les spectres lasers reflètent un fonctionnement mono-fréquence, pour différents courants d'injection, avec une longueur d'onde centrale correspondant à la longueur d’onde de Bragg des miroirs. Un SMSR (Side Mode Suppression Ratio) de plus de 35 dB a été mesuré, ce qui prouve la bonne pureté spectrale de ce laser. Un décalage de la longueur d'onde de 4 nm a été observé en injectant un courant de 20 mA dans des chaufferettes métalliques au-dessus des DBRs.L'intégration monolithique d'un laser DBR hybride en face arrière d'une plaque SOI, entièrement compatible CMOS, a été démontrée pour la première fois, la mise en place d'interconnexions électriques compatibles CMOS et de sources optiques sur une même puce a pu être réalisée. Ce dispositif ouvre la voie à un émetteur-récepteur optique entièrement intégré sur une plateforme Si. / Recently, Silicon Photonics has emerged as a solution for the mass manufacturing of optical transceivers addressing datacenter’s needs in terms of increasing data-rate and reduced cost. Several Silicon-Photonics platforms have been demonstrated using standard Si technology. While these platforms differ in many regards, they all lack a solution for a monolithically integrated light source. To solve this problem, the most commonly proposed approach consists in bonding an InP-stack onto a Si-wafer in order to fabricate a Hybrid III-V/Si laser. However, none of those demonstrations have been made with a standard CMOS-BEOL, preventing a proper electronic-photonic integration. To solve the topographical problem induced by the additional layers, a new integration scheme, called Back-Side, has been developed and is presented in this document.First, the context of this study, a state of the art as well as the presentation of the Back-Side is discussed. The innovation brought by this integration, namely the bonding of the III-V on the back side of the SOI after the structuring of the latter, is then detailed.The correct behavior of a key element to the photonic chip, the grating coupler, is then treated through simulations, fabrication and optical characterizations. We have proved that, under specific conditions, this device has the same measured performances in Back-Side and in Front-Side.The principle of an optical oscillator and then the various modules composing the hybrid laser are then detailed. The implemented laser is based on a hybrid DBR (Distributed Bragg Reflector) III-V/Si cavity. In order to increase the mode confinement in the MQWS (Multi Quantum Wells) and hence ensure a high optical gain, the optical mode is gradually transferred between the III-V waveguide and the silicon waveguide of the hybrid laser by adiabatic tapers, patterned on both sides of the gain zone, to finally be reflected by the mirrors DBR in the silicon.Finally, its manufacturing process is explained before its opto-electronic characterizations are presented. The electrically pumped lasers have been tested under continuous-wave current conditions and the generated light has been collected through the grating coupler to a multi-mode fiber. The fiber coupling losses has been measured to be higher than 10 dB. The output power is up to 1.15 mW at an injection current of 200 mA. The lasing threshold is 45 mA which corresponds to a current density of 1.5 kA/cm2 and the series resistance of the laser contacts is approximately 9 . The threshold voltage is 1.45 V.The laser spectra reflect its single-wavelength laser operation, for different injection currents, with a central wavelength corresponding to the Bragg wavelength of the mirrors. A Side Mode Suppression Ratio (SMSR) of more than 35 dB has been measured. A 4 nm wavelength shift has been observed when injecting 20 mA into both metallic heaters above DBRs.The monolithic integration of a fully CMOS compatible hybrid DBR laser on the backside of a SOI wafer being demonstrated for the first time, implementing CMOS compatible electric interconnects and optical sources on a same chip has could be achieved. This device opens the route to a fully integrated optical transceiver on a Si platform.
9

Conception d’un modulateur électro-optique Mach Zehnder 100 Gbits/s NRZ sur silicium / Design of a 100 Gbs NRZ electro-optic Mach Zehnder modulator on silicon

Prades, Jérémie 10 November 2016 (has links)
Le développement permanent des applications informatiques telles que le stockage de masse, le calcul intensif et les communications large bande, encourage l’émergence de nouvelles technologies de communication. D’une part, les communications à travers des interconnexions métalliques approchent de leurs limites intrinsèques en termes d’énergie, surface et coût par bit. D’autre part, la photonique hybride conventionnelle, basée sur des assemblages 2D/3D de composants photoniques en technologies III-V, ne peut pas être complètement intégrée. Le développement de nouvelle architecture photonique sur silicium est une bonne alternative afin de proposer des systèmes intégrés de communication haut débit. La conception d’un modulateur électro-optique à très haut débit sur silicium fait l’objet de cette thèse. Dans un premier temps, un état de l’art des différents systèmes optiques est dressé, afin d’identifier les principaux verrous technologiques limitant leurs performances. Suite à l’analyse des différents types de modulateur optique implémentés sur silicium, une proposition d’architecture a été faite pour un modulateur Mach Zehnder 100 Gbits/s. Ce premier circuit a été développé avec la technologie PIC25G du fondeur STMicroelectronics. Le driver de ce modulateur a, quant à lui, été conçu avec la technologie 55 nm SiGe BiCMOS de ce même fondeur. Le démonstrateur proposé dans ces travaux offre un débit de 100 Gbits/s avec une modulation NRZ sur une unique voie optique. Pour cette configuration, ce prototype offre un débit binaire au-delà de l’état de l’art (pour une unique voie de transmission optique) avec une énergie par bit de 80 pJ/bit. / The sustained development of software applications including mass storage, intensive computing and broadband communication, motivates the emergence of novel communication technologies. On one hand, communications through metallic interconnections approach their inherent limitations in term of energy, area and cost per bit. On the other hand, conventional hybrid photonics, based on discrete 2D/3D photonic assemblies of III-V photonic devices, cannot be integrated. The rising silicon photonic technology, thanks to its high level of integration, overcomes the shortcomings of the two previous approaches and promises a low cost solution allowing close proximity integration of photonics with electronics.The design of a very high data rate electro-optic modulator on silicon is reported in this thesis manuscript. In a first section, the state of the art of optic systems is presented with a focus on the main technological challenges limiting performances. Then, a silicon based topology is introduced to achieve a 100 Gbs Mach Zehnder modulator. It was implemented with the STMicroelectronics PIC25G technology. The driver of this modulator was designed with the 55 nm SiGe BiCMOS technology of the same founder. The demonstrator introduced in this work offer a 100 Gbs data rate with an NRZ modulation on a single optical channel. For this configuration, this prototype provides a data rate beyond the state of the art (for a single optical transmission path) with an energy per bit of 80 pJ/bit.
10

Design methods for energy-efficient silicon photonic interconnects on chip

Li, Hui 09 December 2016 (has links)
La photonique au silicium est une technologie émergente considérée comme l'une des solutions clés pour les interconnexions sur puce de génération future, offrant plusieurs avantages potentiels tels qu'une faible latence de transmission et une bande passante élevée. Cependant, elle reste confrontée à des défis en matière d'efficacité énergétique. Différentes topologies, layout et architectures offrent diverses options d'interconnexion. Ceci conduit à une grande variation des pertes optiques, qui est l'un des facteurs prédominants dans la consommation d'énergie. De plus, les composants photoniques au silicium sont très sensibles aux variations de température. Sous une activité de puces donnée, ceci conduit à une réduction de l’efficacité des lasers et à une dérive des longueurs d'onde des composants optiques, ce qui entraîne un «Bit Error Ratio (BER)» plus élevé et réduit par conséquent l'efficacité énergétique des interconnexions optiques. Dans cette thèse, nous travaillons sur des méthodologies de conception pour les interconnexions photoniques sur silicium économes-en-énergie et prenant en compte la topologie / le layout, la variation thermique et l'architecture. / Silicon photonics is an emerging technology considered as one of the key solutions for future generation on-chip interconnects, providing several prospective advantages such as low transmission latency and high bandwidth. However, it still encounters challenges in energy efficiency. Different topologies, physical layouts, and architectures provide various interconnect options for on-chip communication. This leads to a large variation in optical losses, which is one of the predominant factors in power consumption. In addition, silicon photonic devices are highly sensitive to temperature variation. Under a given chip activity, this leads to a lower laser efficiency and a drift of wavelengths of optical devices (on-chip lasers and microring resonators (MRs)), which in turn results in a higher Bit Error Ratio (BER) and consequently reduces the energy efficiency of optical interconnects. In this thesis, we work on design methodologies for energy-efficient silicon photonic interconnects on chip related to topology/layout, thermal variation, and architecture.

Page generated in 0.0864 seconds