• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 19
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 50
  • 47
  • 44
  • 35
  • 34
  • 30
  • 26
  • 21
  • 20
  • 17
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Control of optical polarization and spatial distribution in silicon waveguides using Berry's phase

Patton, Ryan Joseph January 2021 (has links)
No description available.
112

INTERACTION OF LIGHT WITH ORDERED ARRAY OF RARE EARTH IONS IN SOLIDS

Arindam Nandi (12295856) 20 April 2022 (has links)
Rare-earth ions in crystalline hosts have been identified as attractive media for quantum optical applications where record-high coherence times, quantum storage efficiency in solids, and quantum storage bandwidth have been demonstrated. Among rare-earth ions, Erbium uniquely possesses optical transitions at 1.5 micrometer region, making it suitable for integration with fiber telecommunication and silicon photonics. However, the intra-4f optical transitions are parity forbidden for rare-earth ions. Although, transitions are observed due to the interaction of the 4f valence electrons' energy levels with crystal fields or the lattice vibrations, the photon emission rate is prolonged for these ions. For example, Er<sup>3+</sup> excited state lifetime for 1530nm transition is around 10 ms, which is about a million times longer than the excited state lifetime of alkali atoms like cesium and rubidium. There have been some recent works showing enhanced emission rate of erbium ions by about 10<sup>3</sup> times by building a nano-photonic cavity to reach high Purcell factors. Our alternative approach to solving this problem is to use an ensemble of ions instead of a single ion to induce collective interactions in a suitable platform. In one experiment, we fabricated a SiN micro-ring resonator and implanted 10<sup>4</sup> isotopically pure <sup>168</sup>Er ions in narrow segments located precisely in solids. The segments are typically separated by 0.962nm corresponding to multiples of the wavelength of Er emission at 1520nm. And we showed that when the lattice of ions is commensurate with the wavelength of the light, the scattering loss caused by the other ions is reduced. We have demonstrated for the first time that how designing atomic geometries in a solid-state photonic system can reduce the radiative loss due to spontaneous emission of ions into other photonic channels. This phenomenon is analogous to the Borrmann effect seen in x-ray transmissions of crystals at the Bragg angle of incidence. We have also shown how the interference between the optical cavity mode and atomic Bragg mode generates Fano-type resonance features. We performed these measurements using erbium ions in the SiN host. The limitations such as low coherence time and large inhomogeneous broadening in this platform prohibit observing cooperative and quantum behavior. To improve the optical property of erbium ions and study other cooperative effects, we engineered an effective ion array in an Er-doped Yttrium Orthosilicate crystal which can exhibit higher coherence time and narrower inhomogeneous broadening compared to SiN. So, we used the spectral hole burning technique to make an atomic grating in randomly distributed Er ions inside YSO. Two counter-propagating pump pulses created a standing wave inside the crystal, which enabled the creation of spectral holes only near the antinode locations. At the same time, atoms near nodes remain in the ground state. Such atomic population grating behaved like an atomic array. We have seen coherent backscattering up to 20% of the incident probe from this atomic grating resembling a mirror. To increase the reflection efficiency, we tried to increase the ion concentration in the YSO crystal. But, at high concentrations, the dipole-dipole interaction increases the broadening and decoherence rates of the ions. To increase the optical density without increasing the ion concentration, we fabricated long waveguides in SiN and LiNbO<sub>3</sub> with rare-earth ions implanted inside.As a future direction, we are trying to increase the reflection efficiency from the atomic grating to the point where we can see atomic mirror-assisted light trapping. We are also trying to see long-range co-operative behavior from rare-earth ion-doped crystals and rare-earth ions implanted inside long waveguides. This can open possibilities of new quantum photonic device engineering for applications in scalable and multiplexed quantum networks.
113

Étude experimentale de l'intégration d'un systèm de distribution quantique de clé à variables continues sur un circuit optique en silicium / Experimental study of the integration of continuous-variable quantum key distribution into a silicon photonics device

Persechino, Mauro 19 December 2017 (has links)
Les évolutions récentes de la cryptographie quantique ont permis de proposer sur le marché des appareils de distribution quantique de clé secrète (QKD). Ceci est obtenu en utilisant soit des variables discrètes et des compteurs de photons (DV), soit des variables continues et des systèmes de détection cohérente (CV). Les avancées technologiques s'orientent maintenant vers la réalisation de dispositifs plus petits, moins chers, et plus commodes à utiliser.L'objectif de cette thèse est de mettre en oeuvre un protocole CV-QKD sur un circuit optique intégré en silicium, en utilisant une modulation Gaussienne d'états cohérents. Deux approches sont utilisées: dans la première l'émetteur Alice et le récepteur Bob sont sur le même circuit photonique (chip) pour une validation de principe, et dans la deuxième ils sont séparés.Les valeurs mesurées des paramètres de la communication permettent d'échanger une clé secrète. / During recent years there have been significant developments in quantum cryptography, bringing quantum key distribution (QKD) devices on the market. This can be done by using either discrete variables (DV) and photon counting, or continuous variables (CV) and coherent detection. Current technological evolutions are now aiming at developing smaller, cheaper and more user-friendly devices.This work focuses on the implementation of CV-QKD using silicon photonics techniques, which provide a high degree of integration. This is exploited to build an on-chip realization of a cryptographic protocol, using Gaussian modulation of coherent states. Two different approaches have been used, first by physically implementing the sender (Alice) and the receiver (Bob) on the same chip for validation purposes, and then by having them onto two separate chips. The measured communication parameters give the possibility to extract a secret key
114

Photonic Deep Neural Network Accelerators for Scaling to the Next Generation of High-Performance Processing

Shiflett, Kyle D. January 2022 (has links)
No description available.
115

Development and functionalization of subwavelength grating metamaterials in silicon-based photonic integrated circuits / Development and functionalization of SWG metamaterials in Si-based PICs

Naraine, Cameron Mitchell January 2024 (has links)
Silicon photonics (SiP) has become a cornerstone technology of the modern age by leveraging the mature fabrication processes and infrastructure of the microelectronics industry for the cost-effective and high-volume production of compact and power-efficient photonic integrated circuits (PICs). The impact that silicon (Si)-based PICs have had on data communications, particularly data center interconnection and optical transceiver technologies, has encouraged SiP chip development and their use in other applications such as artificial intelligence, biomedical sensing and engineering, displays for augmented/virtual reality, free-space communications, light detection and ranging, medical diagnostics, optical spectroscopy, and quantum computing and optics. To expand the functionality and improve the performance of SiP circuits for these surging applications, subwavelength grating (SWG) metamaterials have been thoroughly investigated and implemented in various passive integrated photonic components fabricated on the silicon-on-insulator (SOI) platform. SWG metamaterials are periodic structures composed of two materials with different permittivities that exhibit unnatural properties by using a period shorter than the guided wavelength of light propagating through them. The ability to synthesize the constituent SiP materials without any need to alter standard fabrication procedures enables precise, flexible control over the electromagnetic field and sophisticated selectively over anisotropy, dispersion, polarization, and the mode effective index in these metastructures. This provides significant benefits to SOI devices, such as low loss mode conversion and propagation, greater coupling efficiencies and alignment tolerances for fiber-chip interfaces, ultrabroadband operation in on-chip couplers, and improved sensitivities and limits of detection in integrated photonic sensors. Parallel to the rise of SiP technology is the development of other materials compatible with mature PIC fabrication methods both in the foundry (e.g., silicon nitride (Si3N4)) and outside the foundry (e.g., high-index oxide glasses such as aluminum oxide (Al2O3) and tellurium oxide (TeO2)). Si3N4 offsets the pitfalls of Si as a passive waveguiding material, providing lower scattering and polarization-dependent losses, optical transparency throughout the visible spectrum, increased tolerance to fabrication error, and better handling of high-power optical signals. Meanwhile, Al2O3 and TeO2 both serve as excellent host materials for rare-earth ions, and TeO2 possesses strong nonlinear optical properties. Using a single-step post-fabrication thin film deposition process, these materials can be monolithically integrated onto Si PICs at a wafer scale, enabling the realization of complementary-metal-oxide-semiconductor (CMOS)-compatible, hybrid SiP devices for linear, nonlinear, and active functionalities in integrated optics. While SWG metamaterials have widely impacted the design space and applicability of integrated photonic devices in SOI, they have not yet made their mark in other material systems outside of Si. Furthermore, demonstrations of their capabilities in active processes, including optical amplification, are still missing. In this thesis, we present a process for developing various SWG metamaterial-engineered integrated photonic devices in different material systems both within and beyond SOI. The demonstrations in this thesis emphasize the benefits of SWG metamaterials in these devices and realize their potential for enhancing functionality in applications such as sensing and optical amplification. The objective of the thesis is to highlight the prospects of SWG metamaterial implementation in different media used in integrated optics. This is accomplished by experimentally demonstrating SWG metamaterial waveguides, ring resonators and other components composed of different hybrid core-cladding material systems, including Si-TeO2 and Si3N4-Al2O3. Chapter 1 introduces the background and motivation for integrated optics and SWG metamaterials and provides an overview and comparison of the different materials explored in this work. Chapter 2 presents an initial experimental demonstration of TeO2-coated SOI SWG metamaterial waveguides and mode converters. It also details the design of fishbone-style SWG waveguides aimed at lowering loss and enhancing mode overlap with the active TeO2 cladding material in the hybrid SiP platform. Chapter 3 details an open-access Canadian foundry process for rapid prototyping of Si3N4 PICs, emphasizing the Si3N4 material and waveguide fabrication methods, as well as the design and characterization of various integrated photonic components included in a process design kit. The platform is compared against other Si3N4 foundries, and plans for further development are also discussed. Chapter 4 reports the first demonstration of SWG metamaterial waveguides and ring resonators fabricated using a Si3N4 foundry platform. The measured devices have a propagation loss of ∼1.5 dB/cm, an internal quality factor of 2.11·10^5, and a bulk sensitivity of ∼285 nm/RIU in the C-band, showcasing competitive metrics with conventional Si3N4 waveguides and SWG ring resonators and sensors reported in SOI. Chapter 5 presents work towards an SWG metamaterial-engineered waveguide amplifier. The fabricated device, based in Si3N4 and functionalized by an atomic layer deposited, erbium-doped Al2O3 thin film cladding, exhibited a signal enhancement of ∼8.6 dB, highlighting its potential for on-chip optical amplification. Methods to reduce the loss within the material system are proposed to achieve net gain in future devices. Chapter 6 summarizes the thesis and discusses pathways for optimizing the current devices as well as avenues for exploring new and intriguing materials and devices for future applications in integrated photonics. / Thesis / Doctor of Philosophy (PhD)
116

Development of Photonic Devices Based on the Strained Silicon Technology

Olivares Sánchez-Mellado, Irene 31 May 2021 (has links)
[ES] En la última década, la plataforma de silicio ha emergido como la plataforma por excelencia para desarrollar circuitos fotónicos integrados debido a su versatilidad, la posibilidad de miniaturización y de una producción de bajo coste y a gran escala compatible con los sistemas CMOS ("complementary metal-oxide semiconductor"). La conversión de señales eléctricas a alta velocidad en señales ópticas es una función crítica hoy en día tanto para el procesamiento de datos como en el ámbito de las telecomunicaciones. La forma más eficaz de implementar actualementeuna ,modulación electro-óptica ultra-rápida se basa en el efecto Pockels que, de hecho,se encuentra en el corazón de los moduladores comerciales basados en niobato de litio y polímeros. Sin embargo, la implementación de esta funcionalidad se ve impedida en la plataforma de silicio debido a la simetría de inversión de la red cristalina del silicio. En este contexto, el silicio deformado surgió hace más de un decenio como una solución revolucionaria para romper esa centrosimetría y, de ese modo, hacer emerger no-linealidades de segundo orden en el propio silicio. Sin embargo, y a pesar de los alentadores resultados iniciales, estudios posteriores cuestionaron el origen de las respuestas obtenidas, achacando dichos resultados principalmente al efecto de dispersión de plasma. De hecho, más tarde se puso de manifiesto la presencia de varios factores limitantes y, más recientemente, se estimó que el valor del coeficiente χ(2) debía encontrarse en torno a varios pm/V. El trabajo desarrollado en esta tesis tiene como objetivo contribuir a impulsar el campo de silicio deformado mediante la investigación y el abordaje de dichos factores limitantes para, de esta fora, conseguir un efecto Pockels eficiente. Además, las características de captura de carga libre observadas en las estructuras de silicio deformado se han explotado para desarrollar un dispositivo fotónico no volátil. / [CA] En l'última dècada, la plataforma de silici ha emergit com la plataforma per excelència per a desenvolupar circuits fotònics integrats a causa de la seua versatilitat i la possibilitat de miniaturització i d'una producció de baix cost i a gran escala compatible amb els sistemes CMOS ("complementary metall-oxide semiconductor"). La conversió de senyals elèctrics a alta velocitat en senyals òptics és una funció crítica hui dia tant per al processament de dades com en l'àmbit de les telecomunicacions. La forma més eficaç d'implementar una modulació electro-òptica ultra-ràpida actualemente es basa en l'efecte *Pockels, que de fet,es troba en el cor dels moduladors comercials basats en el niobato de liti i polímers. No obstant això, la implementació d'aquesta funcionalitat es veu impedida en la plataforma de silici degut a la simetria d'inversió de la xarxa cristal·lina del silici. En aquest context, el silici deformat va sorgir fa més d'un decenni com una solució revolucionària per a trencar aqueixa centrosimetría i, d'aqueixa manera, fer emergir no-linealitats de segon ordre en el propi silici. No obstant això, malgrat els encoratjadors resultats inicials, estudis posteriors van qüestionar l'origen de la resposta obtinguda, atribuint-la principalment a aquest efecte de dispersió de plasma. De fet, més tard es va posar en relleu la presència de diversos factors limitants i, més recentment, es va estimar un valor de χ(2) en el rang de diversos pm/V. El treball desenvolupat en aquesta tesi té com a objectiu contribuir a impulsar el camp de silici deformat mitjançant la investigació i l'abordatge d'aquests factors limitants per a aconseguir un efecte Pockels eficient. A més, les característiques de captura de càrrega lliure observades en les estructures de silici deformat s'han explotat per a desenvolupar un dispositiu fotònic no volàtil. / [EN] In the last decade, silicon has emerged as the platform of choice for developing photonic integrated circuits due to its versatility, small footprint and the possibility of a low cost, large-scale CMOS compatible production. The conversion of high-speed electrical signals into optical digital data is a critical function for modern data communication technology. The most effective way for enabling ultra-fast electro-optical modulation is currently based on the Pockels effect, which is the basis of commercial modulators based on lithium niobate and polymers. However, the implementation of such functionality is prevented in the silicon platform due to the inversion symmetry of the silicon lattice. In this context, strained silicon emerged more than a decade ago as a revolutionary solution for breaking that centrosymmetry and, thus, allowing Pockels effect in the silicon material itself. However, despite the encouraging results from initial findings, following studies questioned the origin of the measured electro-optic response. In fact, the presence of several limiting factors was also later highlighted and a rather low strain induced χ(2) in the range of several pm/V was more recently estimated. The work developed on this thesis aims at contributing to push forward the strained silicon field by investigating and tackling such limiting factors to enable an efficient Pockels effect. Furthermore, the trapping properties observed in strained silicon structures have been exploited to develop a non-volatile photonic device. / Olivares Sánchez-Mellado, I. (2021). Development of Photonic Devices Based on the Strained Silicon Technology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/167055
117

Investigation of Multipolar Interference in Silicon Disks for on-Chip Photonics

Díaz Escobar, Evelyn 18 April 2023 (has links)
[ES] Las nanopartículas de alto índice admiten multipolos electromagnéticos que determinan su respuesta a una onda incidente. Cuando se excitan diferentes multipolos, estos pueden interferir, dando lugar a fenómenos sorprendentes. Por ejemplo, a partir de la oscilación en antifase del dipolo toroidal y eléctrico (o magnético) cartesiano o de los correspondientes multipolos de orden superior surgen los llamados estados anapolares, caracterizados por una reducción sustancial de la dispersión de campo lejano y una fuerte localización de la energía dentro del disco. Una de las estructuras de alto índice más sencillas que soportan la interferencia multipolar es el disco, que se puede construir fácilmente sobre un sustrato de sílice utilizando herramientas estándar de nanofabricación de silicio. La mayoría de los estudios de estados de anapolos en discos dieléctricos de alto índice han abordado anapolos que pueden excitarse bajo iluminación normal, pero la incidencia en el plano es necesaria para construir circuitos integrados fotónicos de silicio cuando la luz está completamente unida al plano del chip. En esta tesis investigamos mediante simulaciones numéricas anexas a medidas experimentales la aparición de interferencias multipolares en discos de silicio cuando excitamos en el plano a través de guías de ondas. Primero, investigamos los efectos en discos aislados del tamaño de una sublongitud de onda y luego ampliamos nuestra investigación a cadenas periódicas unidimensionales. Bajo la excitación en el plano de un disco de silicio del tamaño de una sublongitud de onda, observamos anapolos magnéticos y eléctricos de varios órdenes, cambiando la geometría del sistema. Curiosamente, observamos un desacoplamiento del mínimo en la dispersión de campo lejano y el máximo de localización de energía en el disco, que tienen lugar en longitudes de onda bien separadas para la excitación en el plano del anapolo en comparación con el caso de incidencia normal habitual. Por otro lado, a través de la excitación del dipolo toroidal, demostramos la transmisión eficiente por encima del cono de luz en una estructura periódica formada por discos de silicio del tamaño de una sublongitud de onda. Finalmente, predecimos el cierre de la banda prohibida de Bragg debido a la interacción entre dipolos eléctricos y magnéticos en una estructura periódica formada por nanobloques de silicio. Nuestros resultados resaltan diferencias significativas entre las interferencias multipolares cuando las partículas se iluminan desde diferentes direcciones y tienen implicaciones directas para el uso de discos del tamaño de la longitud de onda en circuitos integrados fotónicos de alto índice para aplicaciones que van desde la biodetección y la espectroscopia hasta el procesamiento de señales no lineales. / [CA] Les nanopartícules d'alt índex admeten multipols electromagnètics que determinen la seua resposta a una ona incident. Quan s'exciten diferents multipols, aquests poden interferir, donant lloc a fenòmens sorprenents. Per exemple, a partir de l'oscil·lació en antifase del dipol toroidal i elèctric (o magnètic) cartesià, o dels corresponents multipols d'ordre superior, sorgeixen els anomenats estats anapolars, caracteritzats per una reducció substancial de la dispersió de camp llunyà i una forta localització de l'energia dins del disc. Una de les estructures d'alt índex més senzilles que suporten la interferència multipolar és el disc, que es pot construir fàcilment sobre un substrat de sílice utilitzant eines estàndard de nano fabricació de silici. La majoria dels estudis d'estats d'anapols en discos dielèctrics d'alt índex han abordat anapols que poden excitar-se sota il·luminació normal, però la incidència en el pla és necessària per a construir circuits integrats fotònics de silici quan la llum està completament unida al pla del xip. En aquesta tesi investiguem mitjançant simulacions numèriques annexes a mesures experimentals l'aparició d'interferències multipolars en discos de silici quan excitem en el pla a través de guies d'ones. Primer, investiguem els efectes en discos aïllats de la grandària d'una sublongitud d'ona i després ampliem la nostra investigació a cadenes periòdiques unidimensionals. Sota l'excitació en el pla d'un disc de silici de la grandària d'una sublongitud d'ona, observem anapols magnètics i elèctrics de diversos ordres, canviant la geometria del sistema. Curiosament, observem un desacoblament del mínim en la dispersió de camp llunyà i el màxim de localització d'energia en el disc, que tenen lloc en longituds d'ona ben separades per a l'excitació en el pla del anapol en comparació amb el cas d'incidència normal habitual. D'altra banda, a través de l'excitació del dipol toroidal, vam demostrar la transmissió eficient per damunt del con de llum en una estructura periòdica formada per discos de silici de la grandària d'una sublongitud d'ona. Finalment, prediem el tancament de la banda prohibida de Bragg a causa de la interacció entre dipols elèctrics i magnètics en una estructura periòdica formada per nanobloques de silici. Els nostres resultats ressalten diferències significatives entre les interferències multipolars quan les partícules s'il·luminen des de diferents direccions i tenen implicacions directes per a l'ús de discos de la grandària de la longitud d'ona en circuits integrats fotònics d'alt índex per a aplicacions que van des de la biodetecció i l'espectroscòpia fins al processament de senyals no lineals. / [EN] High-index nanoparticles support electromagnetic multipoles that determine their response to an incident wave. When different multipoles are excited, they can interfere, giving rise to surprising phenomena. For example, from the antiphase oscillation of the Cartesian toroidal and electric (or magnetic) dipole or the corresponding higher-order multipoles arise the so-called anapole states, characterized by a substantial reduction in the far-field scattering and a strong localization of energy inside the disk. One of the simplest high-index structures supporting multipolar interference is the disk, which can be easily built on a silica substrate using standard silicon nanofabrication tools. Most studies of anapole states in high-index dielectric disks have addressed anapoles that can be excited under normal illumination, but the in-plane incidence is necessary for building silicon photonic integrated circuits (PICs) when light is completely bound to the chip plane. In this thesis, we investigate via numerical simulations annex experimental measurements the appearance of multipolar interferences in silicon disks when we excited in-plane through waveguides. First, we investigate the effects on isolated subwavelength-sized disks and then extend our investigation to one-dimensional (1D) periodic chains. Under the in-plane excitation of a silicon subwavelength-sized disk, we observe magnetic and electric anapoles of various orders, changing the geometry of the system. Interestingly, we observed a decoupling of the minimum in the far-field scattering and the maximum of energy localization in the disk, which takes place at well-separated wavelengths for in-plane excitation of the anapole as compared to the usual normal incidence case. On the other hand, through the excitation of the toroidal dipole, we demonstrate the efficient transmission above the light cone in a periodic structure formed by silicon subwavelength-sized disks. Finally, we predict the closure of the Bragg bandgap due to the interaction between electric and magnetic dipoles in a periodic structure formed by silicon nanobricks. Our results highlight significant differences between multipoles interferences when the particles are illuminated from different directions and have direct implications for the use of wavelength-size disks in high-index PICs for applications ranging from biosensing and spectroscopy to nonlinear signal processing. / Debo agradecer a la Generalitat Valenciana que con su programa de becas Santiago Grisolía GRISOLIAP/2018/164 me permitió comenzar este camino. Al Instituto de Tecnología Nanofotónica y a la Universidad Politécnica de Valencia por darme la oportu- nidad de labrar mi camino hacia el título de Doctor of Philosophy in Telecommunications Engineering en sus instalaciones. / Díaz Escobar, E. (2023). Investigation of Multipolar Interference in Silicon Disks for on-Chip Photonics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192830
118

Architecture of Silicon Photonic Links / Architectures de Liens Optiques en Photonique sur Silicium

Polster, Robert 23 September 2015 (has links)
Les futurs calculateurs de haute performance (HPC) devront faire face à deux défis majeurs : la densité de la bande passante d'interconnexion et les problématiques de consommation d'énergie. La photonique silicium est aujourd’hui perçue comme une solution solide pour aborder ces questions, tant du fait de ses performances que de sa viabilité économique en raison de sa compatibilité directe avec la microélectronique CMOS. Actuellement, une tendance de fond conduit à remplacer les interconnexions métalliques par des liens optiques ; cette évolution a été initiée sur des liaisons grandes distances mais atteint actuellement le niveau des liaisons entre cartes électroniques et pourrait conduire à moyen terme à l’intégration de liens optiques au sein mêmes des circuits intégrés électroniques. La prochaine étape est en effet envisagée pour l'interconnexion des processeurs au sein de puces multi-cœurs en positionnant les liens photoniques sur un même support de silicium (« interposer »). Plusieurs travaux ont démontré la possibilité d'intégrer tous les éléments nécessaires pour la réalisation de liaisons optiques sur un substrat de silicium ouvrant des perspectives de co-intégration optique et électronique très riches.Dans ce contexte, la première contribution de cette thèse est l'optimisation d'un lien de photonique de silicium en terme d'efficacité énergétique par bit (à minimiser). L'optimisation que nous avons conduite a pris en compte une modélisation de la consommation d'énergie pour le laser de la liaison, celle de l’étape dé-sérialisation des données, du résonateur en anneau considéré comme modulateur optique et des circuits de réception (« front-end ») et de décision. Les résultats ont montré que les principales contributions à la consommation de puissance au sein d’un lien optique sont la puissance consommée par le laser et les circuits d’alimentation du modulateur électro-optique. En considérant des paramètres de consommation extraits de simulations numériques et de travaux publiés dans des publications récentes, le débit optimal identifié se trouve dans la plage comprise entre 8 Gbits/seconde et 22 Gbits/seconde selon le nœud technologique CMOS utilisé (65nm à 28nm FD SOI). Il est également apparu qu’une diminution de la consommation de puissance statique du modulateur utilisé pourrait encore ramener ce débit optimal en-dessous de 8 Gbits/seconde.Afin de vérifier ces résultats, un circuit intégré récepteur de liaison optique a été conçu et fabriqué en se basant sur un débit de fonctionnement de 8 Gbits/seconde. Le récepteur utilise une technique d’entrelacement temporel destinée à réduire la vitesse d'horloge nécessaire et à éviter potentiellement l’étape de dé-sérialisation dédiée des informations. / Future high performance computer (HPC) systems will face two major challenges: interconnection bandwidth density and power consumption. Silicon photonic technology has been proposed recently as a cost-effective solution to tackle these issues. Currently, copper interconnections are replaced by optical links at rack and board level in HPCs and data centers. The next step is the interconnection of multi-core processors, which are placed in the same package on silicon interposers, and define the basic building blocks of these computers. Several works have demonstrated the possibility of integrating all elements needed for the realization of short optical links on a silicon substrate.The first contribution of this thesis is the optimization of a silicon photonic link for highest energy efficiency in terms of energy per bit. The optimization provides energy consumption models for the laser, a de- and serialization stage, a ring resonator as modulator and supporting circuitry, a receiver front-end and a decision stage. The optimization shows that the main consumers in optical links is the power consumed by the laser and the modulator's supporting circuitry. Using consumption parameters either gathered by design and simulation or found in recent publications, the optimal bit rate is found in the range between 8 Gbps and 22 Gbps, depending on the used CMOS technology. Nevertheless, if the static power consumption of modulators is reduced it could decrease even below 8 Gbps.To apply the results from the optimization an optical link receiver was designed and fabricated. It is designed to run at a bit rate of 8 Gbps. The receiver uses time interleaving to reduce the needed clock speed and aleviate the need of a dedicated deserialization stage. The front-end was adapted for a wide dynamic input range. In order to take advantage of it, a fast mechanism is proposed to find the optimal threshold voltage to distinguish ones from zeros.Furthermore, optical clock channels are explored. Using silicon photonics a clock can be distributed to several processors with very low skew. This opens the possibility to clock all chips synchronously, relaxing the requirements for buffers that are needed within the communication channels. The thesis contributes to this research direction by presenting two novel optical clock receivers. Clock distribution inside chips is a major power consumer, with small adaptation the clock receivers could also be used inside on-chip clocking trees.
119

Lasers inp sur circuits silicium pour applications en telecommunications / Hybrid III-V on silicon lasers for telecommunication applications

Lamponi, Marco 15 March 2012 (has links)
La photonique du silicium a connu un développent massif pendant les dix derniers années. Presque toutes les briques technologiques de base ont été réalisées et ont démontrées des performances remarquables. Cependant, le manque d’une source laser intégrée en silicium a conduit les chercheurs à développer de composants basés sur l’intégration entre le silicium et les matériaux III-V.Dans cette thèse je décris la conception, la fabrication et la caractérisation des lasers hybrides III-V sur silicium basés sur cette intégration. Je propose un coupleur adiabatique qui permet de transférer intégralement le mode optique du guide silicium au guide III-V. Le guide actif III-V au centre du composant fourni le gain optique et les coupleurs, des deux cotés, assurent le transfert de la lumière dans les guides silicium.Les lasers mono longueur d’onde sont des éléments fondamentaux des communications optiques. Je décris les différentes solutions permettant d’obtenir un laser mono-longueur d’onde hybride III-V sur silicium. Des lasers mono longueur d’onde ont été fabriqués et caractérisés. Ils démontrent un seuil de 21 mA, une puissance de sortie qui dépasse 10 mW et une accordabilité de 45 nm. Ces composants représentent la première démonstration d’un laser accordable hybride III-V sur silicium. / Silicon photonics knew an impressive development in the last ten years. Almost all the fundamental building blocks have been demonstrated and reveal competitive performances. However, the lack of an efficient silicon integrated laser source has led the researchers to develop heterogeneous integration of III-V materials on silicon.In this thesis I describe the design, the fabrication and the performances of these hybrid III-V on silicon lasers. I propose the use of an adiabatic coupler that totally transfers the optical mode between the III-V and the silicon waveguides. The active waveguide on III-V materials at the center of the device provides the optical gain, while, on both side, adiabatic couplers allow a loss-less transfer of the optical mode to the silicon waveguide. Single wavelength emitting lasers are fundamental elements for high bandwidth optical links. I review all the effective solutions enabling single waveguide hybrid III-V on SOI lasers. DBR, microring based, DFB and AWG laser solutions were analysed. Single wavelength operating lasers have been fabricated and characterized. A laser threshold of only 21 mA, an output power of more than 10 mW and tunability over 45 nm with a SMSR of 45 dB have been measured. These devices represent the first demonstration of a monolithically integrated hybrid III-V/Si tunable laser made by wafer bonding technique.
120

Engineering Sensitivity: An Optical Optimization of Ring Resonator Arrays for Label-Free Whole Bacterial Sensing

Justin C. Wirth (5930402) 17 October 2019 (has links)
<p><a>The quick, reliable, and sensitive detection of bacterial contamination is desired in areas such as counter bioterrorism, medicine, and food/water safety as pathogens such as<i> E. coli</i> can cause harmful effects with the presence of just a few cells. However, standard high sensitivity techniques require laboratories and trained technicians, requiring significant time and expense. More desirable would be a sensitive point-of-care device that could detect an array of pathogens without sample pre-treatment, or a continuous monitoring device operating without the need for frequent operator intervention.<br> <br> Optical microring resonators in silicon photonic platforms are particularly promising as scalable, multiplexed refractive index sensors for an integrated biosensing array. However, no systematic effort has been made to optimize the sensitivity of microrings for the detection of relatively large discrete analytes such as bacteria, which differs from the commonly considered cases of fluid or molecular sensitivity. This work demonstrates the feasibility of using high finesse microrings to detect whole bacterial cells with single cell resolution over a full range of potential analyte-to-sensor binding scenarios. Sensitivity parameters describing the case of discrete analyte detection are derived and used to guide computational optimization of microrings and their constituent waveguides, after considering a range of parameters such as waveguide dimension, material, modal polarization, and ring radius. The sensitivity of the optimized 2.5 µm radius silicon TM O-band ring is experimentally demonstrated with photoresist cellular simulants. A multiplexed optimized ring array is then shown to detect <i>E. Coli</i> cells in an experimental proof of concept.</a></p>

Page generated in 0.0959 seconds