Spelling suggestions: "subject:"siliques""
1 |
Impacts de la disponibilité en sulfate sur la physiologie de la feuille et sur la qualité, le métabolisme soufré et la germination de la graine de colzaD'Hooghe, Philippe 11 December 2013 (has links) (PDF)
Le colza est une oléagineuse très exigeante en soufre (S). L'étude des impacts de limitations en S sur la physiologie du colza et sa qualité grainière revêt un intérêt majeur dans un contexte de baisse des dépôts atmosphériques entrainant un appauvrissement des sols en S. Les objectifs étaient donc d'étudier l'incidence d'une limitation en S sur la physiologie de jeunes feuilles, et sur la qualité, le métabolisme soufré et la vigueur germinative des graines. L'analyse physiologique (photosynthèse, flux de S par utilisation de traceur <sup>34</sup>S-sulfate), protéomique et biochimique (métabolites S, espèces réactives de l'O<sub>2</sub>) a démontré qu'une limitation en S provoque des perturbations du métabolisme carboné et soufré de la feuille et de la graine, pouvant affecter la qualité grainière. Ainsi, une restriction en S au stade rosette se traduit par la chute de l'activité photosynthétique des jeunes feuilles et conduit à un stress oxydatif. Des restrictions en S à différents stades reproducteurs altèrent la qualité protéique et lipidique de la graine aboutissant à une accumulation amoindrie des acides oléique, linoléique, linolénique et des protéines de stockage (SSPs) riches en S. Une accumulation accrue de SSPs pauvres en S permet un maintien de la teneur en protéines de la graine en cas de restriction survenant en fin de cycle. L'accumulation de S dans les protéines de la graine apparaît principalement contrôlée par la synthèse protéique. La vigueur germinative des graines produites est réduite en cas de restriction précoce en S. Ces travaux ont également permis de démontrer que le péricarpe et la graine en développement sont capables d'assimiler le sulfate par la voie réductrice.
|
2 |
Charakterizace podjednotek eukaryotického translačního iniciačního faktoru 3 (eIF3) u samčího gametofytu A. thaliana / Characterization of eukaryotic translation initiation factor 3 subunits (eIF3) in A. thaliana male gametophyteLinhart, Filip January 2017 (has links)
From RNA-to-protein, translation initiation and protein synthesis is mediated by trans-acting factors that recognize mRNA features common to almost all eukaryotes. Eukaryotic translation initiation factor 3 complex (eIF3) is a highly conserved protein complex that recognizes 5'-CAP elements of the mRNA to initiate translation. eIF3 consists of nine subunits, three of them having two isoforms: eIF3A, eIF2B1, eIF3B2, eIF3C1, eIF3C2, eIF3D, eIF3E, eIF3F, eIF3G1, eIF3G2, eIF3H and eIF3K. This work deals with functional characterization, expression and subcellular localization of eIF3B1, eIF3B2 and eIF3E in Arabidopsis thaliana male gametophyte and interaction of eIF3E with the Constitutive photomorphogenesis 9 (COP9) complex as a regulatory complex of eIF3E post-translational control. Here we show that depletion of eif3b1 or eif3b2 is not gametophytic lethal and that the two protein might function redundantly, whereas, knockout of eIF3E causes male gametophyte lethality. Interestingly, eif3b1 show post-fertilization defects during embryogenesis, suggesting that its redundancy with eIF3B2 is restricted to the gametophyte. Gene expression studies revealed high expression of eIF3 subunits in actively dividing zones of leaf primordia, root meristem and root elongation zones as well as in the vegetative...
|
3 |
The Characterisation of Putative Nuclear Pore-Anchoring Proteins in Arabidopsis thalianaCollins, Patrick January 2013 (has links)
The nuclear pore complex (NPC) is perhaps the largest protein complex in the eukaryotic cell, and controls the movement of molecules across the nuclear envelope. The NPC is composed of up to 30 proteins termed nucleoporins (Nups), each grouped in different sub-complexes. The transmembrane ring sub-complex is composed of Nups responsible for anchoring the NPC to the nuclear envelope. Bioinformatic analysis has traced all major sub-complexes of the NPC back to the last eukaryotic common ancestor, meaning that the nuclear pore structure and function is conserved amongst all eukaryotes. In this study Arabidopsis T-DNA knockout lines for these genes were investigated to characterise gene function. Differences in plant growth and development were observed for the ndc1 knockout line compared to wild-type but gp210 plants showed no phenotypic differences. The double knockout line gp210 ndc1 was generated through crosses to observe plant response to the knockout of two anchoring-Nup genes. No synergistic affect from this double knockout was observed, suggesting that more, as yet unidentified Nups function the transmembrane ring in plants. The sensitivity to nuclear export inhibitor leptomycin B (LMB) was tested also for knockout lines, although growth sensitivity to the drug was not observed. Nucleocytoplasmic transport of knockout lines was measured in cells transformed by particle bombardment. To express fluorescent protein constructs actively transported through the NPC, localisation of protein determined the nucleocytoplasmic transport of the cell. The ndc1single knockout and the double knockout gp210 ndc1 exhibited decreased nuclear export. Further experiments in determining NDC1 localisation and identification of other Nups in the transmembrane ring sub-complex would bring a more comprehensive understanding to the plant NPC.
|
Page generated in 0.0515 seconds