• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 28
  • 15
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A new formula and crystal structure for nickelskutterudite, (Ni,Co,Fe)As-3, and occupancy of the icosahedral cation site in the skutterudite group

Schumer, Benjamin N., Andrade, Marcelo B., Evans, Stanley H., Downs, Robert T. 03 January 2017 (has links)
We propose a new formula for the mineral nickelskutterudite, based on our observation that either (or both) Co or Fe3+ are essential structure constituents. The crystal structure of nickelskutterudite, (Ni,Co,Fe) As-3, cubic, Im (3) over bar, Z = 8: a = 8.2653(6) angstrom, V = 564.65(7) angstrom, has been refined to R-1 = 1.4% for 225 unique reflections I > 2 sigma(1) collected on a Bruker X8 four-circle diffractometer equipped with fine-focus, sealed tube MoKa radiation and an APEX-II CCD detector. This is the first report of the crystal structure of nickelskutterudite. Nickelskutterudite, a member of the skutterudite group of isostructural minerals, adopts a distorted perovskite structure with notably tilted octahedra and an unoccupied to partially occupied icosahedral metal site. In the structure of nickelskutterudite, there is one metal (B) site occupied by Ni, Co, or Fe in octahedral coordination with six As atoms. Procrystal electron density analysis shows each As anion is bonded to two cations and two As anions, resulting in a four-membered ring of bonded As with edges 2.547 and 2.475 angstrom. The extreme tilting of BAs6 octahedra is likely a consequence of the As-As bonding. The nickelskutterudite structure differs from the ideal perovskite structure (A(4)B(4)X(12)) in that As4 anion rings occupy three of the four icosahedral cages centered on the A sites. There are reported synthetic phases isomorphous with skutterudite with the other A site completely occupied by a cation (AB(4)X(12)). Electron microprobe analyses of nickelskutterudite gave an empirical chemical formula of (Ni0.62Co0.28Fe0.12)(Sigma 1.02)(AS(2.95)S(0.05))(Sigma 3.00) normalized to three anions. Pure NiAs3 nickelskutterudite, natural or synthesized, has not been reported. In nature, nickelskutterudite is always observed with significant Co and Fe, reportedly because all non-bonded valence electrons must be spin-paired. This suggests that nickelskutterudite must contain Co3+ and Fe2+, consistent with previous models since Ni4+ cannot spin-pair its seven non-bonded electrons, Co3+ and Fe2+, which can spin-pair all non-bonded electrons, are required to stabilize the structure. No anion deficiencies were found in the course of this study so, including the structurally necessary Co and Fe, the chemical formula of nickelskutterudite (currently given as NiAs3-x, by the IMA) should be considered (Ni,Co,Fe)As-3.
12

CoGe<sub>1.5</sub>Se<sub>1.5</sub> : Structural and Transport Properties Characterization

Ertenberg, Randolph 21 October 2003 (has links)
Skutterudites have been of great interest for thermoelectric applications over the last ten years. Scientific interest has focused on the unique transport properties Skutterudites possess due to the unique crystal structure. Technical interest has grown since it was discovered that some compounds rival the current best thermoelectric materials. To further the understanding of this material system, and optimize its thermoelectric properties, the synthesis and characterization of polycrystalline n- and ptype CoGe1.5Se1.5 was undertaken. Structural, morphological, chemical, electrical, thermal and magnetic properties were studied. These data are compared to those of the binary Skutterudite CoSb3. The results of this study show a very sensitive dependence of the physical properties on stoichiometry. While the thermoelectric figure of merit is low in these materials, it is apparent that optimization via doping and “void filling” will lead to improved thermoelectric properties.
13

Transport Properties of 40% La Filled Skutterudite Thin Films - Theory and Instrumentation

Attanayake, Harsha 24 June 2008 (has links)
No description available.
14

Transport Properties of 40% La Filled Skutterudite Thin Films Sample Preparation and Data Analysis

Divaratne, Dilupama Ayeshani 09 July 2008 (has links)
No description available.
15

Contribution à la modélisation et à la caractérisation de générateurs thermoélectriques / Contribution to the modeling and characterization of thermoelectric generators

El Oualid, Soufiane 03 October 2019 (has links)
L'internet des objets (Internet of Thing, IoT) suscite de plus en plus d'attention dans l'industrie électronique. L'IoT est un concept selon lequel les objets de tous les jours pourront communiquer ensemble via Internet. La plupart des objets connectés utilisent des batteries qu’il faut changer régulièrement ou recharger. Face à la forte croissance annoncée, la recherche de sources d’alimentation autonomes et alternatives s’appuyant sur des systèmes qui capturent l’énergie ambiante et la convertissent en électricité devient primordiale. Parmi les technologies de récupération d’énergie, la thermoélectricité présente des avantages certains liés à sa simplicité, sa fiabilité et son absence de pièces mobiles et de pollution par émission de gaz à effet de serre. L’ensemble de ces caractéristiques favorables place les convertisseurs thermoélectriques comme des candidats possibles pour fournir aux objets connectés de demain les faibles quantités d’énergie nécessaire à leur fonctionnement ou pour recharger les batteries. Mes travaux de thèse s’inscrivent dans ce contexte et se sont déroulés en partie dans le cadre du projet Européen EnSO (Energy for Smart Objects). Des études numériques menées avec le logiciel commercial Comsol Multiphysics ont été réalisées sur des micro-générateurs planaires innovants développés par la société Mahle, partenaire du projet. L’objectif de ces travaux était de comprendre l’influence de nombreux paramètres (géométrie, conditions aux limites en terme de température ou de flux, propriétés électrique et thermique des matériaux actifs) sur leurs performances thermoélectriques (puissance électrique et rendement). Nous avons montré, en particulier, le rôle critique des résistances de contact électriques et thermiques sur la puissance électrique de sortie. Un second volet, plus expérimental, a été consacré au développement de générateurs thermoélectriques miniatures à forte densité de puissance intégrant des matériaux avancés à base de skutterudites. Plusieurs brasures ont été testées lors de l’assemblage des modules thermoélectriques. La caractérisation des performances des modules (25-500°C) couplée aux calculs numériques ont permis de guider les recherches et d’optimiser les procédés de fabrication. Ce travail a abouti à l’obtention d’une densité de puissance record (3,3 W/cm2 pour une différence de température de 450 K) par rapport à l’état de l’art. / The Internet of Thing (IoT) is currently being intensively explored in the electronic industry. IoT is an extension of Internet connectivity into physical end everyday-life objects which will be able to communicate and interact with each other’s. Most of these connected objects are powered by batteries that need to be regularly switched or recharged. Faced with a strong announced growth of their number in coming years, the search for novel alternative, autonomous power supplies that convert surrounding available energy into electricity becomes essential. Among energy harvesting technologies, thermoelectricity is advantageous due to its simplicity, reliability, the absence of moving parts and greenhouse gas emissions. All these favorable characteristics make thermoelectric converters possible candidates for powering or recharging batteries of connected objects. In this context, my PhD work was done within the frame of the European project EnSO («Energy for Smart Objects»). Numerical studies with the software Comsol Multiphysics were performed on innovative planar micro-generators developed by the Mahle company, one of the partners of this project. The main objective of this work was to achieve a better understanding of the influence of numerous parameters (geometry, boundary conditions in terms of temperature and flux, electrical and thermal properties of the active materials) on their thermoelectric performances (output power and efficiency). In particular, we have underlined the critical role played by the electrical and thermal contact resistances on the output power. A second part of this study has been devoted to the experimental development of miniaturized thermoelectric generators capable of delivering high output power density through the integration of skutterudite materials. Several brazes have been tested during the assembly operations of the thermoelectric modules. The characterization of the module performances (25-500°C) combined with numerical calculations have been used as a guidance for optimizing the fabrication process. This work culminated in the successful fabrication of a thermoelectric module with a record-breaking power density of 3,3 W/cm2 achieved under a temperature difference of 450 K.
16

Nanostructured Bulk Thermoelectrics : Scalable Fabrication Routes, Processing and Evaluation

Yakhshi Tafti, Mohsen January 2016 (has links)
Current fossil fuel based energy sources have a huge shortcoming when one discusses their efficiency. The conversion efficiency of fossil fuel-based technologies is less than 40% in best cases. Therefore, until the renewable energy section is mature enough to handle all the energy demand one has to research and develop the technologies available to harvest the energy from the waste heat generated in fossil fuel-based supply sources. One of these emerging technologies is the use of thermoelectric (TE) devices to achieve this goal, which are solid-state devices capable of directly interconverting between heat and electrical energy. In the past decade there has been a significant scientific and financial investment within the field to enhance their properties and result in time/energy efficient fabrication processes of TE materials and devices for a more sustainable environment. In this thesis with use of chemical synthesis routes for nanostructured bulk thermoelectric materials iron antimonide (FeSb2), skutterudites (based on general formula of RzMxCo1-xSb3-yNy) and copper selenide (Cu2Se) are developed. These materials are promising candidates for use in thermoelectric generators (TEG) or for sensing applications. Using chemical synthesis routes such as chemical co-precipitation, salt melting in marginal solvents and thermolysis, fabrication of these TE materials with good performance can be performed with high degree of reproducibility, in a much shorter time, and easily scalable manner for industrial processes. The TE figure of merit ZT of these materials is comparable to, or better than their conventional method counterparts to ensure the applicability of these processes in industrial scale. Finally, through thorough investigation, optimized consolidation parameters were generated for compaction of each family of materials using Spark Plasma Sintering technique (SPS). As each family of TE nanomaterial investigated in this thesis had little to no prior consolidation literature available, specific parameters had to be studied and generated. The aim of studies on compaction parameters were to focus on preservation of the nanostructured features of the powder while reaching a high compaction density to have positive effects on the materials TE figure of merit. / Dagens fossilbränslebaserade energikällor har en enorm brist gällande effektivitet. Effektiviteten av fossilbränslebaserade teknologiers omvandling är mindre än 40 % i bästa fall. Därför tills förnybar energi är mogen nog att hantera alla energibehov, måste man forska och utveckla teknik för att skörda energi från spillvärme i fossilbränslebaserade försörjningskällor. En av dessa nya tekniker är tillämpning av termoelektriska (TE) material för att uppnå målet. Nämnde material är Soldi-State materialer som kan transformera mellan värme och elektrisk energi. Under det senaste decenniet har det pågått en stor vetenskaplig och ekonomisk investering inom området för att förbättra termoelektriska materials egenskaper. Dessutom ville man ta fram tid/energieffektiva TE material och komponenter för en mer hållbar miljö. I denna avhandling utvecklades och producerades termoelektriska material såsom järn antimonid (FeSb2), skutterudit (baserat på allmänna formeln RzMxCo1-xSb3-YNY) och koppar selenid (Cu2Se) med hjälp av kemiska syntesmetoder. Genom att Använda kemiska syntesmetoder som kemisk samutfällning, salt smältning i marginella lösningsmedel och termolys, kan material med hög grad av reproducerbarhet och ställbar för industriella processer tillverkas.   Termoelektrisk omvandling effektivitet hos uppnådde material är betydligt högre än resultat av andra studier. I och med detta kan man säga att materialet kan användas inom industri. Slutligen, genom en grundlig undersökning optimerades packningsparametrar som genererades för packning av varje materialgrupp med hjälp av Spark Plasma Sintring teknik (SPS). Eftersom ingen relevant studie finns för varje grupp av termoelektriska nanomaterial som undersökts i denna avhandling, studerades och genererades dessa specifika parametrar. Syftet med studien är att fokusera på bevarande av nanostrukturerade egenskaperna hos pulvret och att samtidigt nå en hög packningstäthet för att ha positiva effekter på materialens termoelektriska omvandlingseffektivitet. / <p>QC 20160503</p> / NEXTEC / SCALTEG
17

L'effet Nernst dans les systèmes corrélés : étude des fluctuations supraconductrices dans NbxSi1-x et des ordres électroniques dans PrFe4P12

Pourret, Alexandre 06 November 2007 (has links) (PDF)
L'effet Nernst, bien que peu exploité depuis sa découverte en 1886, a acquis récemment une place importante dans le domaine des électrons corrélés. Au cours de cette thèse, nous avons utilisé l'effet Nernst afin d'étudier deux exemples de systèmes corrélés, un supraconducteur NbxSi1-x et un fermion lourd PrFe4P12. Dans l'étude des films amorphes supraconducteurs de Nb0.15Si0.85, le signal Nernst observé est en parfait accord avec la prédiction théorique de Ussiskhin, Sondhi et Huse (USH) dans la limite de faible champ magnétique et près de Tc. La théorie USH qui se fonde sur l'existence de paires de Cooper au temps de vie fini au-dessus de Tc, relie directement le coefficient Nernst à la longueur de corrélation à champ nul, c-à-d la taille des paires de Cooper fluctuantes. L'étude approfondie des données a montré que, de façon plus générale, le signal Nernst est déterminé par une seule longueur, la longueur de corrélation à toute température et tout champ magnétique. La théorie USH n'est que la limite bas champ d'une théorie plus générale qui relierait le coefficient Nernst à la longueur de corrélation. Ces résultats démontrent que le signal Nernst observé au-dessus de Tc jusqu'à très haute température (30 xTc) et jusqu'à très haut champ magnétique (3 X Bc2) dans les films amorphes de Nb0.15Si0.85 est généré par les fluctuations supraconductrices de type paires de Cooper fluctuantes. La seconde étude que nous avons effectuée dans le composé fermion lourd PrFe4P12 nous a permis de caractériser les phases qui apparaissent dans ce matériau à basse température. L'amplitude exceptionnelle de l'effet Nernst observée dans la phase ordonnée à bas champ magnétique est la conséquence de trois facteurs indépendants : une faible densité de porteurs, une augmentation de la masse effective et un grand libre parcours moyen. Ce comportement est caractéristique d'un fermion lourd semi-métallique. L'augmentation importante du pouvoir thermoélectrique dans la phase ordonnée est révélatrice d'une destruction importante de la surface de Fermi. La phase qui apparaît à haut champ magnétique pour la direction [111] semble également liée à une restructuration de la surface de Fermi, bien que moins importante, associée à un comportement non liquide de Fermi. Le changement de signe de l'effet Nernst lors de l'apparition de la phase à haut champ magnétique pourrait s'interpréter comme le signe d'une transition métamagnétique.
18

Fracture toughness of void-site-filled skutterudites

Eilertsen, James S. 07 December 2011 (has links)
Thermoelectric materials are playing an increasingly significant role in the global effort to develop sustainable energy technologies. Consequently, the demand for materials with greater thermoelectric efficiency has stimulated the development of state-of-the-art interstitially doped skutterudite-based materials. However, since intermetallics are often embrittled by interstitial substitution, optimal skutterudite-based device design, manufacture, and operation require thorough assessment of the fracture toughness of interstitially doped skutterudites. This research determines whether the fracture toughness of skutterudites is sacrificed upon interstitial doping. Both pure and interstitially doped cobalt antimonide skutterudites were synthesized via a solid-state technique in a reducing atmosphere with antimony vapor. Their crystal structures were analyzed by X-ray diffraction, and then sintered by hot uniaxial pressing into dense pellets. The electronic properties of the sintered samples were characterized. Fracture toughness of the pure Co₄Sb₁₂ and interstitially doped In₀.₁Co₄Sb₁₂ samples was evaluated by the Vicker's indentation technique and by loading beam-shaped singe-edge vee-notched bend specimens (SEVNB) in 4-point flexure. The intrinsic crack-tip toughness of both materials was determined by measuring the crack-tip opening displacements (COD's) of radial cracks introduced from Vicker's indentations. The intrinsic crack-tip toughness of both pure Co₄Sb₁₂ and interstitially doped In₀.₁Co₄Sb₁₂ were found to be similar, 0.523 and 0.494 MPa√m, respectively. The fracture toughness of both pure and interstitially doped skutterudites, derived from SEVNB specimens in 4-point flexure were also found to be statistically identical, 0.509 and 0.574 MPa√m , respectively, and are in agreement with the intrinsic crack-tip toughness values. However, the magnitude of the toughness was found to be much lower than previously reported. Moreover, fracture toughness values derived from Vickers's indentations were found to be misleading when compared to the results obtained from fracture toughness tests carried out on the micronotched (SEVNB) specimens loaded in 4-point flexure. / Graduation date: 2012
19

Novel nanocomposite synthesis for high-performance thermoelectrics

Eilertsen, James S. 06 January 2013 (has links)
Thermoelectric materials are playing a larger role in the global effort to develop diverse, efficient, and sustainable energy technologies: primarily through power-generating thermoelectric modules. The principal components of thermoelectric modules are solid-state thermoelectric materials – typically heavily doped semiconductors – that convert heat directly into electricity. However, this conversion efficiency is too low to supplant traditional energy technologies – severely limiting the distribution of clean and sustainable thermoelectric energy technologies. Efforts to enhance thermoelectric efficiency, which have been underway for decades, have been slow to realize appreciable gains in thermoelectric efficiency. However, a key advance in improving efficiency – the New Paradigm in thermoelectric material research – has been the development of thermoelectric nanocomposites. Thermoelectric nanocomposites show improved efficiency; however, they are often synthesized from highly toxic elements via energetically intense and costly synthesis procedures. Therefore, this research focuses on the discovery and development of a novel procedure for synthesizing thermoelectric nanocomposites – attrition enhanced nanocomposite synthesis – from open cage-like skutterudite-based materials. With further optimization, high-performance power-generating thermoelectric materials can be produced via this technique. Therefore, attrition-enhanced nanocomposite synthesis may play a small, though instrumental, role in achieving sustainable electrical power. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Jan. 6, 2012 - Jan. 6, 2013
20

Couches minces et dispositifs à haute performance à base de skuttérudite CoSb₃ / High-performance skuerudite CoSb₃ based thin films and devices

Zheng, Zhuanghao 15 October 2018 (has links)
Ce travail porte sur la préparation de couches minces et sur des dispositifs flexibles à base de CoSb₃ performant et à faible coût par pulvérisation cathodique pour des applications thermoélectriques. Dans un premier temps, La pulvérisation cathodique et la co-pulvérisation ainsi que le procédé de traitement thermique ont été étudiés et optimisés pour améliorer la microstructure et surtout les propriétés thermoélectriques de couches minces. Ces deux techniques de dépôt ont donné un facteur de puissance respectivement de 1,47 × 10-4 Wm-1K-2 et de 0,98 × 10-4 Wm-1K-2. Deuxièmement, Ag et Ti ont été utilisés pour doper les couches minces de CoSb3 via un dépôt par pulvérisation magnétron. La microstructure, la morphologie, la composition et les propriétés thermoélectriques des couches minces de CoSb3 dopés ou co-dopeés sont fortement dépendantes de la teneur de dopage. Une amélioration simultanée du coefficient de Seebeck et de la conductivité électrique grâce au dopage par Ag, a été obtenue, indiquant que Ag est un dopant efficace avec un facteur de puissance maximal de 2,97 × 10-4 Wm-1K-2, plusieurs fois celui de l'échantillon non dopé. Des résultats similaires peuvent être obtenus pour des couches minces dopées au Ti, avec une amélioration simultanée du coefficient de Seebeck et de la conductivité électrique. En particulier, la conductivité thermique de la couche mince a été considérablement réduite en contrôlant soigneusement la nanostructure et la teneur en dopage Ti par optimisation du procédé de dépôt, ce qui a entraîné une augmentation de la figure de mérite ZT de 0,15 à 0,90. Troisièmement, des études détaillées sur des couches minces de CoSb₃ co-dopées Ag/(Sn, Ti ou In) ont été réalisées. L'influence de la nature et de la concentration du co-dopant sur les propriétés des couches minces de CoSb₃ a été étudiée. Le coefficient de Seebeck et la conductivité électrique de toutes les couches minces co-dopées sont simultanément augmentés par rapport à la couche mince non dopée. Le facteur de puissance a été ainsi nettement augmentée et une valeur d'environ 0,32 mWm-1K-2 a été obtenue pour des couches minces co-dopées Ag/Sn. Le facteur de puissance maximal pour des couches co-dopées Ag/Ti et Ag/In est également proche d cette valeur. De plus, une faible conductivité thermique a aussi été obtenue pour ces couches co-dopées, en particulier avec le co-dopage Ag/In, conduisant à une valeur ZT beaucoup plus élevée que les autres couches minces. Enfin, un dispositif à base de nano-couches de CoSb₃ a été fabriqué et une structure des électrodes en multicouche a été mise au point afin d'améliorer la stabilité thermique du dispositif à l'air. Une tension de sortie supérieure à 90 mV et une densité de puissance élevée de 0,46 mWcm-2 peuvent être obtenues à partir du dispositif fabriqué. De plus, ce dispositif a également été testé en tant que capteur thermique et il présente une réponse rapide, avec un temps de réaction de quelques centaines de millisecondes avec une grande stabilité. Il a été également démontré la possibilité d'obtenir une tension de sortie relativement élevée d'environ 7 V avec une intensité de courant d'environ 0,35 mA grâce à ces dispositifs thermoélectriques à couches minces. Ces résultats permettent d'envisager des applications réelles, notamment pour alimenter des équipements électroniques/électriques portatifs. / This work was focused on the preparation of low-cost and high performance CoSb₃ thin films by magnetron sputtering deposition, and on the preparation of efficient flexible thin film devices based on CoSb₃ thin films for thermoelectric application. Firstly, two methods, co-sputtering and single target sputtering, for preparing CoSb₃ thin films by using magnetron sputtering deposition were studied and the heat-treatment process was optimized for the improvement of the micro-structure and thermoelectric properties of the films. Thin films prepared by co-sputtering method or using a single alloy target deposition method have a maximum power factor value of 1.47 × 10-4 Wm-1K-2 and 0.98 × 10-4 Wm-1K-2 respectively. Secondly, Ag and Ti were used for doping the CoSb₃ thin films via magnetron sputtering deposition. The microstructure, morphology, composition, and thermoelectric properties of the single doped CoSb₃ films are found to strongly dependent on the doping content. The results demonstrate a simultaneous improvement of the Seebeck coefficient and the electrical conductivity through Ag doping, indicating that Ag is an efficient dopant for CoSb₃ thin film. Maximal power factor value of 2.97×10-4 Wm-1K-2 has been obtained after Ag doping, which is several times of the value for the un-doped sample. Similar results have been obtained from the single Ti doped CoSb₃ thin films. Interestingly, the thermal conductivity of the film has also been dramatically reduced by carefully controlling the nano-structure and Ti doping content, resulting in an enhanced ZT value from 0.15 to 0.90. Thirdly, detailed studies on magnetron sputtering deposition Ag/(Sn, Ti or In) co-doped CoSb3 thin films have been performed. The influence of the co-doped element type and content on the properties of CoSb₃ thin films has been demonstrated. The Seebeck coefficient and the electrical conductivity of all the co-doped thin films have been simultaneously increased comparing to the un-doped thin film, leading to distinctly enhanced power factor. A maximum power factor value of about 0.32 mWm-1K-2 can be obtained from Ag/Sn co-doped thin film, and similar results have been obtained also from Ag/Ti and Ag/In co-doped films. Additionally, lower thermal conductivity has been obtained from the co-doped thin films, especially with the Ag/In co-doping, leading to much higher room temperature ZT value for the co-doped films, compared to the un-doped or Ag-doped thin films. Lastly, CoSb₃ based nano thin film device has been fabricated and a multilayer structure of the electrodes was used in order to improve the thermal stability of the device in air. A relatively high output voltage of above 90 mV and a high power density of 0.46 mWcm-2 can be obtained with this device. Moreover, this device has also been tested as thermal sensor and it exhibits a fast responsivity, with a reaction time of a few hundreds of millisecond, as well as a high stability. It has also been demonstrated the possibility of obtaining relatively high output voltage of about 7 V at a current intensity of about 0.35 mA by connecting several thin film thermoelectric devices. These results are highly encouraging for achieving practical applications such as power supply for portable electronic devices and sensor.

Page generated in 0.0995 seconds