• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 6
  • 2
  • Tagged with
  • 34
  • 34
  • 18
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mesolimbic GluA1 AMPA Receptor Signaling in Dopaminergic Neurons Plays a Critical Role in the Induction of Cross-Sensitization to Psychostimulants in Response to Social Stress

January 2020 (has links)
abstract: Intermittent social defeat stress induces psychostimulant cross-sensitization, as well as long-lasting social avoidance behavior. Previous data reveal heightened expression of AMPA receptor (AMPAR) GluA1 subunits in rat ventral tegmental area (VTA), which occurs concurrently with social stress-induced amphetamine (AMPH) cross-sensitization. These studies described herein examined whether VTA GluA1 AMPARs are important for the behavioral consequences of social stress and investigated the role of the infralimbic (IL) to VTA pathway in the induction of these responses. Functional inactivation of GluA1 in VTA DA neurons prevented stress-induced AMPH sensitization without affecting social avoidance behavior, while GluA1 overexpression in VTA DA neurons mimicked the effects of stress on AMPH sensitization. Female rats were more sensitive to the effects of stress on AMPH administration than males, specifically during proestrus/estrus, which is characterized by higher circulating estradiol. Fluorescent immunohistochemistry revealed that females expressed higher GluA1 in VTA DA neurons as a result of intermittent social defeat stress, independent of estrus stage; by contrast, females during proestrus/estrus displayed higher tyrosine kinase receptor type 2 (TrkB) expression, which is the receptor for brain derived neurotrophic factor (BDNF), in VTA DA neurons, independent of stress exposure. Functional inactivation of GluA1 in VTA DA neurons prevented stress-induced AMPH sensitization and overexpression mimicked the effects of stress on AMPH sensitization. This suggests that BDNF-TrkB signaling may work concomitantly with GluA1 signaling in the VTA to drive sex-dependent differences in stress-induced locomotor sensitization effects. Optogenetic inhibition of the IL-VTA pathway in male rats prevented stress-induced AMPH sensitization compared to control animals. In addition, fluorescent immunohistochemistry displayed less Fos labeling in the nucleus accumbens (NAc) of rats with IL-VTA light inhibition compared to control animals. This suggests that the IL-VTA pathway plays a critical role in the induction of stress-induced sensitivity to AMPH, and blocking this pathway prevents mesolimbic DA signaling to the NAc. We conclude that IL glutamate projections onto GluA1-homomeric AMPA receptors in VTA DA neurons play a critical role in driving the stress-induced sensitization response in males and females. Therefore, GluA1 VTA DA neurons could potentially be a therapeutic target to prevent stress-induced drug susceptibility in the future. / Dissertation/Thesis / Doctoral Dissertation Neuroscience 2020
12

Novel Extrinsic and Intrinsic Factors Mediating Osteoarthritis

Kara A Negrini (8102609) 08 May 2020 (has links)
<p>Osteoarthritis (OA) is a leading cause of disability globally, with higher incidence in older people and lower socioeconomic status populations. The challenges health care systems face with management of the disease highlights the importance of OA research. Many studies examine possible risk factors of knee and hip OA including obesity, smoking, and alcohol consumption. Findings support that while obesity increases risk of knee OA, smoking is not a major risk factor. These extrinsic factors are, however, associated with lower socioeconomic status, and also with anxiety and depression disorders. Up to 30% of patients with chronic knee OA have described psychological stress and decreased quality of life due to debilitating pain, but the effects of psychological stress on development of knee OA has not been described.</p><p><br></p><p>At the cellular level, mechanosensitive cation channels in cartilage and bone, are involved with OA, but studies looking specifically at synovium and joint capsule are limited. Transient receptor potential (TRP) channels are upregulated in joint capsule in end-stage primary shoulder OA. We were unable to identify any previous studies evaluating Piezo channel expression in musculoskeletal soft tissues, but Piezo channel antagonism reduces chondrocyte death after mechanical injury. These findings suggest channels may help regulate joint responses to repetitive loading during training or work while also contributing to protective mechanisms within the musculoskeletal system. The overall objective of this research was to investigate factors that impact OA development or the disease phenotype. Two studies evaluated the following aims: 1) demonstrate the influence of chronic psychological stress on knee OA and overall systemic health, and 2) characterize the role of mechanosensitive channels in the joint capsule in OA. The first study used a mouse chronic social defeat model paired with destabilization of the medial meniscus (DMM) surgery to create a social stress scenario during OA development. We hypothesized chronic social defeat would exacerbate knee OA structural changes and systemic inflammation. The second study aimed to explore the role of mechanosensitive channels in joint capsule during OA development in the equine. Immunohistochemistry was performed on forelimb fetlock joint capsule from horses with varying degrees of lameness to first identify TRP and Piezo channel expression. Next, fibroblasts were isolated from the tissue to determine channel activity. We hypothesized that TRP and Piezo channels are required for normal homeostasis, but are dysregulated in OA and dysregulation contributes to fibrosis of the joint capsule. Joint capsule fibrosis leads to joint stiffening and reduced range of motion, two of the cardinal signs of OA.</p><p><br></p><p>The results of the first study showed OA was induced to a similar extent in both groups of mice that underwent DMM surgery. While anxiety- and depressive-like behaviors were exhibited by mice that underwent chronic social defeat episodes, unexpectedly, the majority of systemic inflammatory markers were not worse in mice with DMM and chronic social defeat compared to DMM alone. We were also able to show TRP and Piezo channel expression in one normal dorsal and palmar fetlock joint capsule sample, however, COVID-19 prevented further investigation. With our results we were able to conclude that while chronic social stress influences development of OA, in the current experiments, neither systemic inflammation nor structural signs of knee OA were worse with chronic social stress. We hope that exploration of OA through these two studies will help us understand how the disease contributes to overall systemic dysfunction while also providing a baseline for future development of TRP and Piezo channel modulators to prevent joint pathologies.</p>
13

Chronic Social Defeat up-Regulates Expression of the Serotonin Transporter in Rat Dorsal Raphe Nucleus and Projection Regions in a Glucocorticoid-Dependent Manner

Zhang, Jia, Fan, Yan, Li, Ying, Zhu, Hobart, Wang, Liang, Zhu, Meng Yang 01 December 2012 (has links)
Chronic stress and dysfunction of the serotonergic system in the brain have been considered two of the major risks for development of depression. In this study, adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD). To mimic stressful conditions, some rats were not exposed to CSD, but instead treated with corticosterone (CORT) in oral solution while maintained in their home cage. Protein levels of the serotonin transporter (SERT) in the dorsal raphe nucleus (DRN), hippocampus, frontal cortex, and amygdala were examined by Western blotting or immunofluorescence staining. The results showed that CSD up-regulated SERT protein levels in the DRN, hippocampus, frontal cortex, and amygdala regions. This up-regulation was abolished or prevented by adrenalectomy, or treatment with antagonists of corticosteroid receptors mifepristone and spironolactone, alone or in combination. Similarly, up-regulated SERT protein levels in these brain regions were also observed in rats treated with oral CORT ingestion, which was analogously prevented by treatment with mifepristone and spironolactone. Furthermore, both CSD- and CORT-induced up-regulation of SERT protein levels in the DRN and three brain regions were attenuated by simultaneous treatment with fluoxetine, an antidepressant that specifically inhibits serotonin reuptake. The results indicate that up-regulation in SERT protein levels in the DRN and forebrain limbic structures caused by CSD regimen was mainly motivated by CORT through corticosteroid receptors. The present findings demonstrate that chronic stress is closely correlated with the serotonergic system by acting on the regulation of the SERT expression in the DRN and its projection regions, which may contribute to the development of depression. Chronic stress and dysfunction of the serotonergic system are etiologically related to depression. In an attempt to explore their interaction, we found that chronic social defeat upregulated expression of serotonin transporter in the DRN and the projection regions, which may induce an alteration of serotonin transformation in the brain. This interaction may account for the development of this disease.
14

Chronic Social Defeat up-Regulates Expression of Norepinephrine Transporter in Rat Brains

Chen, Ping, Fan, Yan, Li, Ying, Sun, Zhongwen, Bissette, Garth, Zhu, Meng Yang 01 January 2012 (has links)
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. However, the molecular link between chronic stress and noradrenergic neurons remains to be elucidated. In the present study adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD) for 4 weeks. Measurements by in situ hybridization and Western blotting showed that CSD significantly increased mRNA and protein levels of the norepinephrine transporter (NET) in the LC region and NET protein levels in the hippocampus, frontal cortex and amygdala. CSD-induced increases in NET expression were abolished by adrenalectomy or treatment with corticosteroid receptor antagonists, suggesting the involvement of corticosterone and corticosteroid receptors in this upregulation. Furthermore, protein levels of protein kinase A (PKA), protein kinase C (PKC), and phosphorylated cAMP-response element binding (pCREB) protein were significantly reduced in the LC and its terminal regions by the CSD paradigm. Similarly, these reduced protein levels caused by CSD were prevented by adrenalectomy. However, effects of corticosteroid receptor antagonists on CSD-induced down-regulation of PKA, PKC, and pCREB proteins were not consistent. While mifeprestone and spironolactone, either alone or in combination, totally abrogate CSD effects on these protein levels of PKA, PKC and pCREB in the LC and those in the hippocampus, frontal cortex and amygdala, their effects on PKA and PKC in the hippocampus, frontal cortex and amygdala were region-dependent. The present findings indicate a correlation between chronic stress and activation of the noradrenergic system. This correlation and CSD-induced alteration in signal transduction molecules may account for their critical effects on the development of symptoms of major depression.
15

The Regulation of Corticosteroid Receptors in Response to Chronic Social Defeat

Zhang, Jia, Fan, Yan, Raza, Muhammad U., Zhan, Yanqiang, Du, Xiang Dong, Patel, Paresh D., Zhu, Meng Yang 01 September 2017 (has links)
Our previous studies demonstrated that chronic social defeat (CSD) up-regulated expression of the serotonin transporter (SERT) and norepinephrine transporter (NET) in the brain, which was mediated by corticosteroid receptors. In the present study we first analyzed the alterations of corticosteroid receptors in different brain regions after the CSD paradigm. The results showed that CSD significantly reduced glucocorticoid receptor (GR) protein levels in the CA1 and dentate gyrus of the hippocampus, as well as in central and basolateral nuclei of the amygdala, which was accompanied by the translocation of GR from cytoplasm to nuclei. CSD also markedly reduced GR mRNA levels and MR immunoreactivity in the CA1, CA3 and dentate gyrus areas of the hippocampus. Conversely, CSD pronouncedly enhanced GR mRNA and protein levels in the dorsal raphe nucleus and locus coeruleus relative to the control. As an extension of our previous studies, in situ hybridization and immunohistochemical staining demonstrated that CSD regimen caused a notable increase of SERT mRNA levels in the dorsal raphe nucleus and increased SERT immunoreactivities in CA1 and CA3 of the hippocampus, as well as those in the basolateral nuclei of the amygdala. Likewise, CSD regimen resulted in an evident enhancement of NET immunoreactivity in the CA1 of the hippocampus and in the basolateral nuclei of the amygdala. Our current findings suggest that GR expressional alterations in response to CSD are complex and brain region-specific, which may correspond to their different functions in these regions.
16

Psychsocial Stress Modulation of the Murine Anti-Viral Immune Response During a Primary Influenza Infection and the Impact on Immunologic Memory

Mays, Jacqueline Wiesehan 26 June 2009 (has links)
No description available.
17

Estudo do fator de transcrição Max no hipocampo de camundongos adolescentes submetidos a um modelo de submissão social prolongada. / Study of the Max transcription factor in the adolescent mice hippocampus subjected to a model of prolonged social defeat.

Amaral, Camila Ematne do 22 October 2012 (has links)
Transtornos depressivos afetam de 1-6% dos adolescentes a cada ano ao redor do mundo. Esse aparecimento precoce anuncia uma doença mais grave e persistente na vida adulta, sendo considerada a terceira principal causa de suicídio na faixa etária entre 14-29 anos. Os exatos mecanismos moleculares envolvidos na fisiopatologia da depressão ainda não são compreendidos, e muitos estudos destacam o processo de apoptose como um possível mecanismo de contribuição para a depressão relacionada ao estresse crônico. Desta forma, o objetivo deste trabalho foi avaliar os efeitos da submissão social em camundongos machos adolescentes, sobre comportamentos emocionais e sobre a localização celular hipocampal do fator de transcrição Max. Metodologia: Camundongos machos adolescentes, C57BL/6, foram submetidos durante 21 dias consecutivos a um modelo de submissão social e ambos os grupos, experimental (n=16) e controle (n=16) foram analisados nos aspectos comportamental, expressão gênica e localização da proteína Max. Resultados: Dados retidos devido à solicitação (publicação de dados, patentes ou diretos autorais). / Depressive disorders affect 1-6% of adolescents each year around the world. This early appearance heralds a more serious and persistent disease in adulthood, being considered the third leading cause of suicide in people aged between 14-29 years. The precise molecular mechanisms involved in the pathophysiology of depression are not yet understood, and many studies highlight the process of apoptosis as a possible mechanism contributing to depression related to chronic stress. Thus, the objective of this study was to evaluate the effects of social defeat in male adolescent mice on emotional behavior and on hippocampal cellular setting of the Max transcription factor. Methodology: C57BL/6 male mice were submitted to 21 consecutive days of a model for social defeat and, both the experimental (n=16) and control groups (n=16) were investigated for behavioral analysis and also for the Max protein expression and settings. Results: Request to retain data (publication, patent or copyright directs).
18

Papel do hipotálamo lateral e tálamo anterior nas respostas contextuais na derrota social. / Role of the lateral hypothalamus and anterior thalamus in memory in social defeat.

Júnior, Miguel José Rangel 19 September 2017 (has links)
Relações entre machos de roedores muitas vezes se dão com a manifestação de comportamentos agressivos, em um embate em que se define um perdedor e um ganhador. O macho perdedor, de acordo com experimentos realizados no laboratório, apresenta comportamentos de defesa (avaliação de risco) quando exposto ao contexto da derrota social. Na expressão da defesa condicionada, estruturas do hipotálamo lateral devem ser importantes, que são também mobilizadas durante o confronto. No hipotálamo lateral destacamos a a parte justadorsomedial do hipotálamo lateral (LHAjd) que tem conexões com o sistema septo-hipocampal e projeta-se liga ao prémamilar dorsal (PMD), crítico para a expressão de comportamentos de defesa. Por outro lado, o PMD, que é uma estrutura altamente mobilizada durante o confronto social, tem conexões com o núcleo anteromedial do tálamo (AMv), estrutura já conhecida pela sua importância na aquisição da memória contextual e espacial. Assim, no presente trabalho, investigamos o papel do LHAjd na expressão e do AMv na aquisição da defesa condicionada na derrota social. Nos animais com lesão do LHAjd, observamos diminuição nos comportamentos de avaliação de risco durante exposição ao contexto. Nos animais com lesão do AMv o mesmo efeito. Dado os efeitos das lesões no AMv, elaboramos um paradigma para estudo em camundongos, a fim de se realizar inativações pontuais com farmacogenética nos neurônios glutamatérgicos em animais transgênicos durante a derrota social. Foi observado o mesmo padrão em camundongos transgênicos vGlut2-cre inativados com farmacogenética, não havendo influência nos comportamentos durante a derrota social. Inativações antes do contexto não causaram efeito na defesa condicionada. As inativações durante a derrota, no entanto, não tiveram efeito quando o residente agressivo está na exposição ao contexto. Os dados sugerem que o LHAjd tem papel na expressão da defesa condicionada, enquanto que o AMv tem papel na aquisição da defesa condicionada ao contexto, mas não no reconhecimento do residente agressivo. / Male rodents may interact aggressively, and from the agonistic encounter, it results a winner and a defeated animal. Accordingingly, the defeated male shows defensive behaviors (risk assessment) to the social defeat-related context. Contextual responses are known to rely on hippocampal processing, and one of the main targets of the hippocampal system is the justodorsomedial part of lateral hypothalamus (LHAjd), which projects to dorsal premamillary nucleus (PMD), known to be involved in the expression of social defensive behaviors. Notably, PMD, a hypothalamic site highly responsive to the social defeat, in turn, projects to the ventral part of thalamic anteromedial nucleus (AMv), previously shown to be involved in the acquistion of spatial and contextual memory to predatory threats. Thus, in present study, we investigated the role of LHAjd in expression and of AMv in acquisition of social defeat conditioned defensive behaviors. In LHAjd lesioned animals, we observed a decrease in risk assessment behaviors during exposute to the social defeat associated context , but not during the social defeat itself, suggesting a role in the expression of contextual but not in the innate social defeat. In AMv lesioned animals, we observed that the animals lost contextual defensive response, suggesting a role in the acquisition and/or expression of contextual responses. Next, using pharmacogetic inhibition, we investigated in vGlut2-cre transgenic mice the role of the AMV in the acquisition and expression of contextual defensive behavior. We have found that AMV inactivation prior to the social defeaf, but not prior to the exposure to the social defeat related context, was able to decrease contextual responses in animals tested withot the presence of the male aggressor, but not in the situation where the male aggressor was present. Overall, our results suggest that the LHAjd has a role in the expression of conditioned defense, and that the AMV is involved in the acquisision of contextual fear responses, but not in social recognition of aggressive male.
19

Social Defeat Stress Causes a Switch in the Neural Systems Mediating Benzodiazepine Motivation

Doss, Lilian 07 December 2011 (has links)
Benzodiazepines are widely abused by anxious individuals. Consequently, this thesis modeled anxiety in a mouse model in order to investigate benzodiazepine motivation within this sub-population. Using the Tube test of Social Dominance and the Resident/Intruder Paradigm I investigated whether animals identified as dominant or submissive/defeated would differentially display a preference for 0.25 mg/kg midazolam in a conditioned place preference paradigm. Consistent with my hypotheses, benzodiazepine preference was mediated by negative reinforcement as submissive but not dominant mice displayed a preference for midazolam. Furthermore, different neural systems mediated benzodiazepine preference dependent on the stress status of the animal (acute vs. chronic stress) such that, acutely stressed animals experienced benzodiazepine preference through a dopamine-independent pathway whereas chronically stressed animals experienced benzodiazepine preference through a dopamine-dependent pathway. Within chronically stressed mice, blockade of either D1 or D2 receptors attenuated benzodiazepine preference.
20

Social Defeat Stress Causes a Switch in the Neural Systems Mediating Benzodiazepine Motivation

Doss, Lilian 07 December 2011 (has links)
Benzodiazepines are widely abused by anxious individuals. Consequently, this thesis modeled anxiety in a mouse model in order to investigate benzodiazepine motivation within this sub-population. Using the Tube test of Social Dominance and the Resident/Intruder Paradigm I investigated whether animals identified as dominant or submissive/defeated would differentially display a preference for 0.25 mg/kg midazolam in a conditioned place preference paradigm. Consistent with my hypotheses, benzodiazepine preference was mediated by negative reinforcement as submissive but not dominant mice displayed a preference for midazolam. Furthermore, different neural systems mediated benzodiazepine preference dependent on the stress status of the animal (acute vs. chronic stress) such that, acutely stressed animals experienced benzodiazepine preference through a dopamine-independent pathway whereas chronically stressed animals experienced benzodiazepine preference through a dopamine-dependent pathway. Within chronically stressed mice, blockade of either D1 or D2 receptors attenuated benzodiazepine preference.

Page generated in 0.0506 seconds