• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 11
  • 9
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 62
  • 16
  • 16
  • 14
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nyutveckling av sjunkspärr

Hansson, Torbjörn, Luckmann, Christian January 2010 (has links)
<p>We got in contact with Marco AB, who we’ve had contact with before concerning earlier projects, to find out if they were interested in arranging a larger project for our last class (Examensarbete 15hp). They were very positive to this proposition, and soon they offered us a project regarding reconstruction of their current mechanical device that absorbs all the force from the lift itself when it is at a predefined level (sv. sjunkspärr). The current solution does fulfill the requirements that are given, however it is not a solution that gives a high level of satisfactory. It is complicated, both to manufacture and assemble, it is not recyclable due to the hydraulic system and in addition it has retardation issues. But most of all, it is expensive. That may raise the question; how come Marco is still using the current solution? The device is an accessory for the lift tables that Marco produces and sells, not a standard solution. They produce about 100-150 of them every year, and therefore is a small part of their total income. This in addition to the solution being bought from a consultant, they merely tested the product and then added it to the assortment. The project ended up in a solution none of us could have foreseen, neither by function nor visualization.</p>
2

Nyutveckling av sjunkspärr

Hansson, Torbjörn, Luckmann, Christian January 2010 (has links)
We got in contact with Marco AB, who we’ve had contact with before concerning earlier projects, to find out if they were interested in arranging a larger project for our last class (Examensarbete 15hp). They were very positive to this proposition, and soon they offered us a project regarding reconstruction of their current mechanical device that absorbs all the force from the lift itself when it is at a predefined level (sv. sjunkspärr). The current solution does fulfill the requirements that are given, however it is not a solution that gives a high level of satisfactory. It is complicated, both to manufacture and assemble, it is not recyclable due to the hydraulic system and in addition it has retardation issues. But most of all, it is expensive. That may raise the question; how come Marco is still using the current solution? The device is an accessory for the lift tables that Marco produces and sells, not a standard solution. They produce about 100-150 of them every year, and therefore is a small part of their total income. This in addition to the solution being bought from a consultant, they merely tested the product and then added it to the assortment. The project ended up in a solution none of us could have foreseen, neither by function nor visualization.
3

Characterization of Ambient Noise and Design of Current Sensors for High-Frequency Noise

Chang, Ming-Hui 13 October 2005 (has links)
High population density and the presence of many more motorcycles than cars make the noise environment in Taiwan different from that in other countries. There is growing concern about the electromagnetic effects within this environment. The electromagnetic environment is unique and the information about radio noise is not sufficient at this time. The interference of wireless communication system may be caused by the noise environment. Thus, we need to consider the influence that the noise causes. With the measured radio noise, the minimum suggested receive power in an urban environment ranges from 354 MHz to 426 MHz. It is analyzed by the means of Cumulative Distribution Function (CDF), Amplitude Probability Distribution (APD), Noise Amplitude Distribution (NAD), Pulse Duration Distribution (PDD), Pulse Spacing Distribution (PSD) and Average Crossing Rate (ACR). We measured the properties of noise at an urban center, a nearby port, and a freeway exit, which are located in the same city, and on a hill lying adjacent to the city. We chose an urban center and a nearby hill as the noise environment for the following reasons: (a) The noise margin at urban areas is smaller than that at suburban and rural areas. (b) The coverage of the measurement on a hill is larger than that in a city. (c) The relation of the noise environment between a hill and an urban center can be obtained. The statistical distributions of the four particular noise environments are shown and design constraints for a broadcasting system are revealed. Secondly, we also provide a technology for designing miniature Rogowski coils on glass substrates to obtain current sensors for high operating frequencies in this thesis. The coils are useful for measurement of a small current on a microstrip line at high frequencies. In our experiments, a 50 Ohm microstrip line is driven by an input voltage of 100 mV. A frequency as high as 6 GHz has been used. The highest frequency is limited by the oscilloscope available to us. Geometric effects of the device were investigated to obtain the sufficient output voltage at high frequencies. The induced output voltage can approach approximately 7 mV by modifying the structure of Rogowski coils. At the same time, On-chip solenoid inductors for high frequency magnetic integrated circuits are proposed. The eddy current loss was reduced by dividing the inductor into three consecutive inductors connected in series. The inductor has an inductance of 1.1 nH and the maximum quality factor (Qmax) of 50.5. The self-resonant frequency and the operating frequency at Qmax are greater than 17.5 GHz and 16.7 GHz, respectively.
4

Studying anomalous WWγ couplings and developing the global calorimeter trigger control system for the CMS experiment

Huckvale, Benedict James January 2009 (has links)
The rate of decay of the process W -> Wγ is well-defined by the Standard Model, so measured deviation is a strong but indirect indicator of non-Standard Model physics. Deviations of this coupling strength can be parameterized, in a model independent, general sense, into two parameters, Δk and λ.
5

Bezsensorové polohové řízení solenoidu / Sensorless position control of solenoid valve

Keprt, Jaroslav Unknown Date (has links)
This thesis deals with the determination of the position of the solenoid core in real time based on the measured current. The reference position of the current is used for feedback control of the solenoid. For this issue, software tool Matlab/Simulink was used. For current and temperature measurements, PCB circuits were created. The whole project was carried out on the dSPACE platform.
6

Design och test av nyckelkomponenter för rekylsimulator för skidskytte

Nordmark, Markus January 2022 (has links)
Syftet med projektet var att ta fram en rekylsimulator till användning vid torrträning i skidskytte för att tillföra mer realism till träningsformen. Projektet hade som mål att testa ut komponenter till simulatorn, designa ett fäste samt att både genom mätningar och användartester verifiera den framtagna simulatorns validitet. För att med god reliabilitet testa de ingående komponenterna byggdes en testrigg där upprepade tester kunde utföras. Ett fäste togs även fram och itererades på tills en slutgiltig lösning erhölls. De två verifieringsstegen hann ej utföras och de ingående komponenterna uppvisade ej heller egenskaper som är nog väl överensstämmande med uppmätta värden för att garantera goda chanser till en lyckad simulering. I testerna förekom det även problem med den sensor som användes vilket innebar en viss osäkerhet kring erhållna värden. Över lag krävs mer arbete för att finna bättre komponenter, men även för att testa löningsprincipen och dess giltighet / The purpose of the project was to develop a recoil simulator for use in dry training in biathlon to add more realism to the practice. The project aimed to evaluate components of the simulator, design a mounting for the rifle and to verify the validity of the developed simulator through both measurements and user tests. In order to test the constituent components with good reliability, a test rig was constructed where repeated reliable measurements could be performed. A mounting was also designed and iterated upon until a final solution was obtained. The two verification steps were not performed, due to time constraints and the components also did not show properties that were well enough in accordance with measured values to guarantee good chances of a successful simulation. In the tests, there were also problems with the sensor used, which meant there was some uncertainty about the obtained values. In general, more work is required to find better components, but also in order to test the principle and its validity. / <p>2022-07-01</p>
7

Nondestructive quality inspection of solenoid valves

Gadyuchko, Andrey, Rosenbaum, Sören 03 May 2016 (has links) (PDF)
The presented innovative magnetic testing method utilises the fact, that each commercially available electromagnet can not only be used as an actuator, but also comprises internal sensor functions. This allows a huge application variety in the fields of non-destructive testing and condition monitoring of electromagnetic systems during production and within the application in the field.
8

Fault simulator for proportional solenoid valves

Bhojkar, Amit Arvind 09 August 2004 (has links)
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults. Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
9

Fault simulator for proportional solenoid valves

Bhojkar, Amit Arvind 09 August 2004
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults. Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
10

Physical Modelling and Automatic Configuration of CES Valve

Gällsjö, Anders, Johansson, Mattias January 2012 (has links)
This thesis has been performed at Öhlins Racing AB which is known world-wide for its high quality racing shock absorbers. Öhlins have been developing shock absorbers for more than 30 years and in addition to this they also develop a technology for semi-active suspension. Semi-active suspension technology makes it possible to achieve an intelligent and dynamic vehicle chassis control. Compared to standard passive suspensions, semiactive dampers allow improving vehicle cornering performance while still providing good comfort when cruising. This is achieved by a real time adjustment of the suspensions damping characteristics. Öhlins system for semi-active suspension is called CES (Continuously controlled Electronic Suspension). The systems consist of electronically controlled hydraulic valves for uniflow dampers. These valves are mounted on all four dampers of the vehicle and are controlled individually to provide the desired ride quality. The valves are configurable to suit many types of vehicles by changing internal parts. The first goal of this thesis project was to study the behaviour of the CES valve and uniflow damper. In order to achieve this a simulation model was created using Hopsan which is a 1-dimensional multi-domain modelling tool developed at the division of Fluid and Mechatronic Systems at Linköping University. The model considers mechanical forces from for example springs together with hydraulic forces. It was validated against static and dynamic measurements made in a flow bench and a dynamometer. The second goal was to use the simulation model as part of a tool that configures the CES valve according to a requirements specification. To achieve this goal a method of estimating the characteristics of the internal damper valves was developed. This estimation method, together with the simulation model, was used to choose the best valve configuration by using weighted least-squares. The result is presented in a Matlab-based graphical user interface.

Page generated in 0.0498 seconds