• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 76
  • 43
  • 32
  • 29
  • 27
  • 26
  • 25
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The effects of energy balance and exercise on IGF-I and IGFBP-3

Ormsbee, Michael J. January 2005 (has links)
Thesis (M.S.)--South Dakota State University, 2005. / Includes bibliographical references (leaves 42-49).
62

Changes in the activity of growth hormone receptor promotor 1 in liver of cattle

Kobayashi, Yasuhiro, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 185-198). Also available on the Internet.
63

The function of the type 1 insulin-like growth factor receptor (IGF1R) in intestinal tumorigenesis

Takiguchi, Megumi January 2008 (has links)
No description available.
64

The role of the type 1 insulin-like growth factor receptor (IGF1R) in renal cancer

Yuen, John Shyi P. January 2007 (has links)
No description available.
65

The Insulin-Like Growth Factor-1 (IGF1) System as a Potential Biomarker for Nutritional Status and Growth Rate in Pacific Rockfish (SEBASTES SPP.)

Hack, Nicole L 01 March 2017 (has links) (PDF)
Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influences growth via endocrine pathways such as the growth hormone (GH) / insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. Here, I tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. I reared juvenile olive rockfish under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. These data in olive rockfish support the possible use of plasma Igf1 as a positive indicator of growth rate variation in rockfishes. Using my findings from this experiment, I further investigated the use of this biomarker in wild rockfish by examining patterns of Igf1 variation in blue rockfish (Sebastes mystinus) caught within and outside of two Marine Protected Areas (MPAs) along California’s coast: Piedras Blancas MPA and Point Buchon MPA. Individual Igf1 levels correlated positively with increasing size as seen in laboratory reared fish. After correcting plasma Igf1 values for body size, circulating Igf1 was observed to be higher in blue rockfish within the boundaries of the Piedras Blancas MPA compared to fish from an adjacent site with no fishing restrictions. Igf1 levels in blue rockfish caught within the Point Buchon MPA, however, were similar to those outside of that MPA. These results suggest that blue rockfish within the Piedras Blancas MPA may experience enhanced growth relative to conspecifics outside of that MPA’s boundaries, and that such growth increases may be specific to MPA locations. My findings support previous studies that Igf1 is a positive indicator for growth in teleost fish and can be used as a tractable biomarker in wild rockfish which could enhance management efforts of fish stocks within marine protected areas.
66

Involvement of insulin-like growth factor I and its binding proteins on proliferation and differentiation of murine bone marrow macrophage precursors

Long, Ezhou. January 1996 (has links)
No description available.
67

Cloning and characterization of ovine insulin, insulin-like growth factor-I and -II genes

Ohlsen, Susan M. 06 June 2008 (has links)
Genes encoding ovine insulin like growth factor-I (oIGF-D), -II (oIGF-II) and insulin were cloned, sequenced and characterized. The olGF-I gene contains six exons spanning greater than 30 kilobases. Class 1 and class 2 oIGF-I transcripts contained exons 1 and 2 alternatively-spliced to exon 3, respectively. A novel oIGF-I exon (W) was located upstream of exon 1 and was found alternatively spliced to exon 3. No in-frame methionine codon was found in exon W and therefore translation is proposed to initiate at the methionine codon present in exon 3. Using primer extension, the ovine transcription initiation sites were mapped and found to be well conserved among mammalian and avian IGF-I genes. Expression of exon 1-, 2- and W-specific transcripts was examined in seven tissues from adult or fetal sheep using a reverse transcription-polymerase chain reaction (RT-PCR) assay. Exon 1 transcripts were the most abundant and found in all fetal and adult tissues. Exon 2 transcripts were found in all tissues and in general showed the highest expression in adult liver. Exon W transcripts were expressed at low levels in all tissues examined. To confirm that exon W mRNA produced biologically active IGF-I, an exon W containing cDNA was cloned under the control of a glucocorticoid-inducible MMTV promoter (pMMTV-IGF-IW) and transfected into a bovine mammary epithelial cell line (MAC-T). Stable transfectants were induced with a synthetic glucocorticoid to produce secretable IGF-I. Transcript expression of pMMTV-IGF-IW was confirmed by Northern blot analysis and IGF-I was quantified in the medium of growing cells with RIA. Biological activity of the secreted IGF-I was assayed by measuring the incorporation of [³H]-thymidine into DNA of test MAC-T cells. Media harvested from the pMMTV-IGF-IW transfected clones stimulated labeling of MAC-T cells greater than that of conditioned media from MAC-T cells. Thus, biologically active IGF-I was secreted from pMMTV-IGF-IW cells. The oIGF-II gene is composed of 9 exons that span approximately 25 kilobases. Approximately 750 nucleotides upstream of oJGF-II exon 1 are the three exons of the ovine insulin gene which are transcribed in the same direction as oIGF-II. Four putative promoters direct transcription of six 5’ non-coding exons (1, 3, 4, 5, 6, and 7), which are alternatively spliced to exons 8, 9, and 10. An ovine exon comparable to human exon 2 has not been identified. Multiple transcription initiation sites were identified for exons 1 and 6 by primer extension analysis. Using a RT-PCR assay, exon | and 3 transcripts were shown to be expressed in adult but not fetal liver. In addition, a novel transcript that contained exon 1 spliced directly to exon 8 was detected in adult liver. Exon 4 transcripts were not detected, whereas exons 5, 6 and 7 transcripts were detected in both fetal and adult liver. Like the human and rodent genes, the regulation of expression of the oIGF-I and oIGF-II genes are under complex control. / Ph. D.
68

The involvement of the insulin-like growth factor system during the oocyte maturation and early development of zebrafish. / CUHK electronic theses & dissertations collection

January 2011 (has links)
As a functional unit involved in both maintaining endocrine homeostasis and also producing mature eggs, the ovary plays a central role in female reproduction. The development and function of the ovarian follicles are controlled by gonadotropins released from the pituitary. It is widely accepted that the action of gonadotropins on ovarian follicles is mediated by paracrine/autocrine factors produced by the somatic cells surrounding the oocyte. Increasing evidence indicates that the Igf system is involved in mediating the action of gonadotropins in the ovary. Previously, we identified a gonad-specific Igf subtype (Igf3) distinct from Igf1 and Igf2. This fmding further highlights the importance of the Igf system in the fish ovary. In this thesis, efforts were made to understand the role of the Igf system in ovary using zebrafish as the model organism, and attention was focused on Igf3. / Because the expression of Igf3 is correlated with the LH receptor in zebrafish follicles, the regulation of igf3 by gonadotropins was subsequently studied in the ovary. The expression of igf3 was significantly up-regulated in both ovarian fragments and isolated follicles upon treatment with hCG in dose- and time-dependent manners. Treatment with 8-Br-cAMP or IBMX mimicked the effects of hCG on the expression of igf3 in follicles of different stages. / Four Igfs are present in zebrafish, and our results show that all four igfs are expressed in the ovary of zebrafish and exhibit the differential expression profiles during folliculogenesis. Using a primary culture of zebrafish follicle cells, we demonstrated that hCG stimulated igf2b and igf3 expression but suppressed igf2a expression. Moreover, the effect of gonadotropin could be mimicked by IBMX, which increased the intracellular levels of cAMP, suggesting the possible involvement of cAMP in the gonadotropin-based regulation and differential expression of igf2a, igf2b and igf3. These results also show that the Igf3 is the Igf subtype most sensitive to gonadatropin and cAMP. / In addition, the expression patterns of igf1, igf2a, igf2b, igf3, igf1ra and igf1rb were also studied during zebrafish embryogenesis. The unique temporal and spatial expression patterns of igf1, igf2a, igf2b, igf3, igf1ra and igf1rb were revealed by both real-time PCR and whole mount in situ hybridization, the results suggest divergent functions for these Igfs in early zebrafish development. / Taken together, the present studies provide substantial information about the Igf system, especially that of Igf3 in the zebrafish ovary. Data were gathered regarding Igf3 expression, regulation and functions, which is not only helpful for the understanding of the role of the Igf system in fish reproduction, but also contributes toward uncovering the ovarian signaling network involved in oocyte maturation across vertebrates. This study of igfs gene expression provides direct information to the study of Igf signaling in zebrafish. / To study the function of Igf3, bioactive recombinant Igf3 proteins were prepared using a bacterial expression system. Incubation of follicles with recombinant zebrafish Igf3 significantly enhanced oocyte maturation in time-, dose- and stage-dependent manners. The potential mechanisms of Igf3-induced oocyte maturation were then investigated. Igf3 stimulated oocyte maturation via a steroid-independent manner. Igf3 induced oocyte maturation through Igf1rs and the PI3 kinase, PDE3 and MAP kinase were necessary for Igf3-mediated oocyte maturation in zebrafish. / We first examined the gene expression patterns of Igf3 in the ovary. The igf3 gene in zebrafish was found to be alternatively spliced into two transcripts, with transcript variant 1 exclusively expressed in the gonads and transcript variant 2 only expressed during early development. Using specific antibodies developed for zebrafish Igf3, both the prepropeptide and the mature peptide forms of Igf3 were found to be predominantly expressed in the zebrafish ovary. Real-time PCR and in situ hybridization revealed that igf3 mRNA levels were relatively low in the early follicles but significantly increased after the mid vitellogenic stage (midstage III) and were high in the full grown follicles. In the full grown follicles, igf3 mRNA was detected primarily in the somatic follicular cells, with a low level of expression in the oocytes. Igf3 immunoreactivity was confined to the follicular cells alone. / Li, Jianzhen. / Advisers: Hui Zhao; Hon Ki Christopher Cheng. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 122-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
69

Expression of human insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) in transgenic tobacco.

January 2004 (has links)
Cheung Chun Kai. / Thesis submitted in: December 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 133-146). / Abstracts in English and Chinese. / Acknowledgements --- p.ii / Abstract --- p.iv / 摘要 --- p.vii / Table of Contents --- p.ix / List of Tables --- p.xv / List of Figures --- p.xvi / List of Abbreviations --- p.xxi / Chapter Chapter 1 --- Overview --- p.1 / Chapter Chapter 2 --- Literature Review --- p.3 / Chapter 2.1 --- Historical background --- p.3 / Chapter 2.2 --- Insulin-like growth factor --- p.5 / Chapter 2.2.1 --- Structure and synthesis --- p.5 / Chapter 2.2.2 --- Physiologic role and biological actions --- p.6 / Chapter 2.3 --- Insulin-like growth factor binding protein-3 --- p.8 / Chapter 2.3.1 --- Structure and synthesis --- p.8 / Chapter 2.3.2 --- Physiologic role and biological actions --- p.8 / Chapter 2.4 --- Clinical aspects --- p.10 / Chapter 2.4.1 --- Metabolic effects of IGF-1 --- p.10 / Chapter 2.4.1.1 --- Similarities between IGF-I and insulin --- p.11 / Chapter 2.4.1.2 --- Differences between IGF-I and insulin --- p.13 / Chapter 2.4.2 --- Glucose and protein metabolism --- p.14 / Chapter 2.4.3 --- Therapeutic use of IGF-I --- p.15 / Chapter 2.4.3.1 --- Type 1 diabetes mellitus --- p.16 / Chapter 2.4.3.2 --- Type 2 diabetes mellitus --- p.17 / Chapter 2.4.4 --- Side effects --- p.19 / Chapter 2.5 --- World demands --- p.21 / Chapter 2.5.1 --- Significance of large-scale production --- p.21 / Chapter 2.5.2 --- IGF-I production --- p.21 / Chapter 2.6 --- Plants as bioreactors --- p.24 / Chapter 2.6.1 --- Medical molecular farming --- p.24 / Chapter 2.6.2 --- Advantages of plant bioreactor --- p.24 / Chapter 2.6.3 --- Commercial biopharmaceutical protein --- p.25 / Chapter 2.7 --- Tobacco expression system --- p.26 / Chapter 2.7.1 --- Tobacco model plant --- p.26 / Chapter 2.7.2 --- Transformation methods --- p.26 / Chapter 2.8 --- Hypotheses and aims of study --- p.28 / Chapter Chapter 3 --- Expression of Human IGF-I and IGFBP-3 in Transgenic Tobacco --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Materials and methods --- p.31 / Chapter 3.2.1 --- Chemicals --- p.31 / Chapter 3.2.2 --- Plant materials --- p.31 / Chapter 3.2.3 --- Bacterial strains --- p.32 / Chapter 3.2.4 --- Codon modification of IGF-I and IGFBP-3 cDNAs --- p.32 / Chapter 3.2.5 --- Transient assay to study IGF-I or IGFBP-3 translatability --- p.39 / Chapter 3.2.5.1 --- Construction of chimeric genes for particle bombardment --- p.39 / Chapter 3.2.5.2 --- Particle bombardment of GUS fusion constructs --- p.42 / Chapter 3.2.6 --- Construction of chimeric genes for tobacco transformation --- p.44 / Chapter 3.2.6.1 --- Construction of chimeric genes with different promoters --- p.44 / Chapter 3.2.6.1.1 --- Construction of chimeric gene with CaMV 35S promoter --- p.44 / Chapter 3.2.6.1.2 --- Construction of chimeric genes with phaseolin promoter --- p.46 / Chapter 3.2.6.2 --- Construction of fusion constructs --- p.48 / Chapter 3.2.6.2.1 --- Construction of GUS fusion constructs --- p.48 / Chapter 3.2.6.2.2 --- Construction of LRP fusion constructs --- p.51 / Chapter 3.2.6.3 --- Construction of phaseolin targeting constructs --- p.56 / Chapter 3.2.6.3.1 --- Construction of phaseolin targeting constructs without AFVY --- p.56 / Chapter 3.2.6.3.2 --- Construction of phaseolin targeting constructs with AFVY --- p.60 / Chapter 3.2.6.4 --- Cloning of chimeric genes into Agrobacterium binary vector pBI 121 --- p.64 / Chapter 3.2.7 --- Confirmation of sequencing fidelity of chimeric genes --- p.66 / Chapter 3.2.8 --- Transformation of Agrobacterium by electroporation --- p.66 / Chapter 3.2.9 --- Transformation of tobacco --- p.67 / Chapter 3.2.10 --- Selection and regeneration of transgenic tobacco --- p.67 / Chapter 3.2.11 --- GUS assay --- p.68 / Chapter 3.2.12 --- Extraction of leaf genomic DNA --- p.68 / Chapter 3.2.13 --- PCR of genomic DNA --- p.69 / Chapter 3.2.14 --- Synthesis of DIG-labeled double-stranded DNA probe --- p.69 / Chapter 3.2.15 --- Southern blot analysis --- p.70 / Chapter 3.2.16 --- Extraction of total RNA from leaves or developing seeds --- p.70 / Chapter 3.2.17 --- Northern blot analysis --- p.71 / Chapter 3.2.18 --- Extraction of total protein --- p.71 / Chapter 3.2.19 --- Tricine SDS-PAGE --- p.72 / Chapter 3.2.20 --- Western blot analysis --- p.72 / Chapter 3.2.21 --- Enterokinase digestion of fusion protein --- p.73 / Chapter Chapter 4 --- Results --- p.74 / Chapter 4.1 --- Particle bombardment for transient assay --- p.74 / Chapter 4.1.1 --- Construction of GUS fusion genes for particle bombardment --- p.74 / Chapter 4.1.2 --- Transient expression of GUS fusion genes in soybean cotyledons and tobacco leaves --- p.76 / Chapter 4.2 --- Construction of chimeric genes for tobacco transformation --- p.78 / Chapter 4.3 --- "Tobacco transformation, selection and regeneration" --- p.81 / Chapter 4.4 --- Detection of GUS activity --- p.83 / Chapter 4.5 --- Detection of transgene integration --- p.84 / Chapter 4.5.1 --- Extraction of genomic DNA and PCR --- p.84 / Chapter 4.5.2 --- Southern blot analysis --- p.88 / Chapter 4.6 --- Detection of transgene transcription --- p.92 / Chapter 4.6.1 --- Extraction of total RNA --- p.92 / Chapter 4.6.2 --- Northern blot analysis --- p.92 / Chapter 4.7 --- Detection of transgene translation --- p.99 / Chapter 4.7.1 --- Extraction of total protein and Tricine SDS-PAGE --- p.99 / Chapter 4.7.2 --- Western blot analysis --- p.102 / Chapter 4.7.3 --- Enterokinase digestion of fusion protein --- p.109 / Chapter Chapter 5 --- Discussion --- p.111 / Chapter 5.1 --- Codon modification of IGF-I and IGFBP-3 cDNAs --- p.114 / Chapter 5.2 --- Transient expression of IGF-I and IGFBP-3 cDNAs --- p.116 / Chapter 5.3 --- Fusion of IGF-I and IGFBP-3 cDNA with LRP gene --- p.118 / Chapter 5.4 --- Enterokinase digestion --- p.120 / Chapter 5.5 --- Phaseolin targeting signal --- p.122 / Chapter 5.6 --- Gene silencing --- p.124 / Chapter 5.7 --- Future perspectives --- p.128 / Chapter Chapter 6 --- Conclusion --- p.131 / References --- p.133
70

Association of genetic and dietary factors on obesity and related metabolic perturbation in Hong Kong Chinese adolescents.

January 2008 (has links)
Mong, Lok Yee. / Thesis submitted in: December 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 124-145). / Abstracts in English and Chinese; some text in appendix also in Chinese. / Acknowledgements --- p.i / Abstract (English version) --- p.iii / Abstract (Chinese version) --- p.v / Table of Contents --- p.vii / List of Tables --- p.ix / List of Figures --- p.xi / List of Abbreviations --- p.xiii / Chapter Chapter 1 - --- Introduction / Chapter 1.1 --- Childhood obesity: a worldwide epidemic --- p.1 / Chapter 1.2 --- Health consequences of childhood obesity --- p.3 / Chapter 1.3 --- Determinants of childhood obesity --- p.5 / Chapter 1.4 --- Hormonal dysregulation and obesity --- p.9 / Chapter 1.5 --- Project objectives and long term significance --- p.14 / Chapter Chapter 2 - --- Research Plan and Methodology / Chapter 2.1 --- Study cohort / Chapter 2.1.1 --- Subject recruitment --- p.15 / Chapter 2.1.2 --- Ethics --- p.16 / Chapter 2.1.3 --- Measurements and blood sample collections --- p.16 / Chapter 2.1.4 --- Subgroup for dietary assessment --- p.18 / Chapter 2.1.5 --- Cohort re-visits in 2006 --- p.19 / Chapter 2.2 --- Genetic study / Chapter 2.2.1 --- Sample size estimation and research subjects --- p.21 / Chapter 2.2.2 --- DNA samples --- p.22 / Chapter 2.2.3 --- Candidate genes --- p.24 / Chapter 2.2.4 --- SNP tagging and prioritizing --- p.25 / Chapter 2.2.5 --- Genotyping methods & quality control --- p.28 / Chapter 2.2.6 --- Statistical analysis --- p.31 / Chapter 2.3 --- Dietary assessment / Chapter 2.3.1 --- Three-day 24-hour dietary recalls --- p.36 / Chapter 2.3.2 --- Lifestyle questionnaire --- p.37 / Chapter 2.3.3 --- Data management --- p.38 / Chapter 2.3.4 --- Statistical methods --- p.39 / Chapter Chapter 3 - --- Results Page / Chapter 3.1 --- Study cohort --- p.41 / Chapter 3.2 --- Genetic study / Chapter 3.2.1 --- Subjects --- p.41 / Chapter 3.2.2 --- SNPs selection --- p.41 / Chapter 3.2.3 --- Factor analysis of adiposity in the study population --- p.44 / Chapter 3.2.4 --- Genotyping and association testing in stage1 --- p.50 / Chapter 3.2.5 --- Genotyping and association testing in stage2 --- p.52 / Chapter 3.2.6 --- Association of the CART gene with adiposity --- p.55 / Chapter 3.2.7 --- Association of the GHR gene with adiposity --- p.60 / Chapter 3.2.8 --- Association of the GHRHR gene with adiposity --- p.69 / Chapter 3.2.9 --- Association of the IGFBP3 gene with adiposity --- p.75 / Chapter 3.2.10 --- Association of the POMC gene with adiposity --- p.83 / Chapter 3.2 --- Dietary assessment / Chapter 3.3.1 --- Nutrient intakes of the subgroup in2004 --- p.87 / Chapter 3.3.2 --- Nutrient intakes of the subgroup in2006 --- p.92 / Chapter 3.3.3 --- Lifestyle pattern of the cohort in2006 --- p.97 / Chapter Chapter 4 - --- Discussion / Chapter 4.1 --- The role of GH-related genes with adolescent adiposity --- p.102 / Chapter 4.2 --- Nutrient intakes and lifestyle pattern of the adolescents --- p.120 / Chapter 4.3 --- Conclusion of this study --- p.123 / References --- p.124 / Appendices / Chapter A --- Information of the SNPs selected --- p.146 / Chapter B --- Comparison of SNPs minor allele frequency (MAF) among two genotyping stages and HapMap data --- p.154 / Chapter C --- Hardy-Weinberg Equilibrium (HWE) of SNPs in two genotyping stages --- p.162 / Chapter D --- Factor score coefficient matrix --- p.170 / Chapter E --- Association of SNPs with factors scores --- p.172 / Chapter F1 --- Consent form (English version) --- p.207 / Chapter F2 --- Consent form (Chinese version) --- p.209 / Chapter G1 --- 24-hour dietary recall forms (English version) --- p.211 / Chapter G2 --- 24-hour dietary recall forms (Chinese version) --- p.218 / Chapter H --- Food photo booklet --- p.225 / Chapter I1 --- Lifestyle questionnaire (English version) --- p.236 / Chapter I2 --- Lifestyle questionnaire (Chinese version) --- p.238

Page generated in 0.0624 seconds